The goal of this project is to develop, implement, and evaluate the impacts of co-developed civic engagement outcomes for the Big Fork and Littlefork River Watersheds.
The Big Fork River Watershed Assessment will include the waters of the Big Fork, Sturgeon River, Caldwell Brook, Bear River, and Bowstring River. This Assessment will also include Mirror Lake, Battle Lake, Bass Lake, Larson Lake, Gunn Lake, Coon Sandwick Lake, Busties Lake, Dead Horse Lake, North Star Lake, Burns Lake, Big Ole Lake, Big Island Lake, Bello Lake, Maple Lake, Long Lake, Jessie Lake, Trestle Lake, Clear Lake, Dora Lake, Moose Lake, Shallow Pond Lake, and Island Lake.
The Koochiching County SWCD staff will collect water chemistry and field parameters at specific times to determine amount of contaminant load into each stream. These sites will coincide with locations where stream flow data is also being collected. This project will focus on watershed load monitoring in both the Big Fork and Little Fork River watersheds.
This project will provide monitoring of four of the major watersheds (8-digit Hydrologic Unit Codes) in the western part of the Rainy River Basin. Staff from the Lake of the Woods SWCD will conduct water quality sampling, review, manage and provide collected data to the Minnesota Pollution Control Agency (MPCA).
This project is a cooperative effort between Crow Wing and Itasca County to contract with RMB Laboratories to generate 65 lake assessment/trend analysis reports. The watershed protection model is an innovative and proactive approach to water resource management which is geared towards prioritizing areas of concern, targeting implementation strategies, and measuring their effectiveness. These assessments are also useful and understandable tools for lake associations and the public.
Itasca County is about to begin their water plan update process, which will be finished in 2017. This plan will be watershed protection oriented following a similar format to what Crow Wing County has done. We are currently in the process of have lake screening reports completed for 38 Itasca County lakes, and we would like to continue this program to add reports for an additional 34 lakes.
The goal of this project is to complete a water chemistry dataset necessary for the assessment of six Leech Lake Reservation lakes within the Big Fork Watershed for the determination of overall watershed health, and the identification of impaired waters (according to State water quality standards), or waters in need of additional protection to prevent future impairments.
This project will initiate the process of community engagement in the LeSueur River watershed by assessing the needs and interests of the community and bringing a diverse set of stakeholders together to determine how best to foster action in improving and protecting water quality.
Four stream segments, totaling over 100 miles, are impaired in the Little Fork River for Total Suspended Solids (TSS) and this study will provide local partners with project options for reduction of sediment in the Little Fork Watershed. Through the use of sediment fingerprinting determinations can be made if the sediment is from in or near channel, or the watershed and identify what sub-watershed the sediment is coming originating.
The sediment fingerprinting design will be custom fit for the unique geology and land-use history in the Little Fork River Watershed. The design will identify potential sources of sediment pollution within the watershed, including soil erosion from upland forests and wetlands from subwatersheds with different glacial deposits and bedrock geology, gullies, riverbanks, and bluffs. This will enable local partners to field verify potential BMP locations with private and public land owners to mitigate sediment inputs to the Little Fork Watershed.
This phase one project is to develop an understanding of sediment transport and fate in the Little Fork River system through the use of sediment fingerprinting and a sediment budget by setting up sampling sites for target sediments and source sediments.
The MPCA has selected the Soil and Water Assessment Tool (SWAT) watershed model to simulate watershed hydrology and water quality to assess various restoration scenarios in the Little Cannon River watershed. The SWAT model is an important tool in developing an understanding of existing conditions and simulating conditions under various management scenarios to inform the development of implementation strategies and plans to restore and protect streams and lakes.
The Little Fork River and Big Fork River - USGS FLOWSED project was established to collect site specific data for streamflow, SSC, and bedload at the Littlefork and Big Fork Rivers in Northern Minnesota; use the data to evaluate the use of dimensionless sediment rating curves for the rivers; and document the results of the study in conjunction with the results from other rivers in the state for the application of regional sediment rating curves to rivers in Minnesota.
Four stream segments, totaling over 100 miles, are impaired in the Little Fork River for Total Suspended Solids (TSS). This study will provide local partners with project options for reducing sediment in the Little Fork Watershed. Through the use of sediment fingerprinting determinations can be made if the sediment is from in (or near) channel, or the watershed and identify what sub-watershed the sediment is coming originating.
The Little Fork River Watershed Assessment will include the waters of the Rice River, Little Fork River, Flint Creek, Nett Lake River, Beaver Brook, Valley River, Willow River, Sturgeon River, Bear River, Dark River, and the Lost River. This Assessment will also include Little Bear Lake, Bear Lake, Thistledew Lake, Little Moose Lake, Raddison Lake, Napoleon Lake, Owen Lake, Dark Lake, Clear Lake, Long (Main) Lake, Dewey Lake, and Long (North) Lake. These lakes and streams are found throughout the Little Fork River Watershed, which spans parts of Koochiching, St. Louis and Itasca Counties.
The purpose of this project is to re-calculate the Littlefork river sediment Total Maximum Daily Load (TMDL) utilizing the 15 mg/L Total Suspended Solids (TSS) standard and update the associated Littlefork Watershed Restoration and Protection Strategies (WRAPS) document.
This Phase 6 request for Ducks Unlimited’s Living Lakes program will enhance 1,000 acres of shallow lakes and restore 50 acres of small wetlands by engineering and installing water control structures for Minnesota DNR and U.S. Fish & Wildlife Service on public lands and wetlands under easement. Structures will be used by DNR and Service partners to restore wetland hydrology and actively manage shallow lake water levels to enhance their ecology for ducks, other birds, and hunters in the Prairie Region of Minnesota.
This Phase 7 request for Ducks Unlimited's Living Lakes program will enhance 1,160 acres of shallow lakes and restore 120 acres of small wetlands by engineering and installing water control structures for Minnesota DNR and U.S. Fish & Wildlife Service on public lands and wetlands under easement. Structures will help DNR and Service agency partners restore wetland hydrology and actively manage shallow lake water levels to enhance their ecology for ducks, other birds, and hunters in Minnesota's Prairie Pothole Region.
Phase 2 of Ducks Unlimited's ongoing engineering program restored and enhanced shallow lakes and wetlands by installing water level control structures to improve aquatic plant abundance and water clarity in partnership with the Minnesota DNR and U.S.
In this Phase 4 of our ongoing "Living Lakes" program to enhance shallow lakes and restore wetlands, DU successfully enhanced 5,952 acres of shallow lakes and wetlands and restored 59 acres of wetlands by completing 16 separate projects for waterfowl and other wildlife in the Prairie, Transition, and Metro Sections in partnership with Minnesota DNR, U.S. Fish & Wildlife Service, and private landowners.
This Phase 9 request for Ducks Unlimited's Living Lakes program will enhance or restore 1,440 acres of wetlands and adjacent prairie grasslands for the U.S. Fish & Wildlife Service and Minnesota DNR on public lands and private lands under permanent easement. DU biologists and engineers will design wetland restorations and water control structures for active management of shallow lake water levels to enhance their ecology for ducks, other wildlife, and people, primarily in SW Minnesota's Prairie Pothole Region.
This Phase 10 request for Ducks Unlimited's Living Lakes program will enhance or restore 1,325 acres of wetlands and adjacent prairie grasslands for the U.S. Fish & Wildlife Service and Minnesota DNR on public lands and private lands under permanent easement. DU biologists and engineers will design wetland restorations and water control structures for active management of shallow lake water levels to enhance their ecology for ducks, other wildlife, and people, primarily in SW Minnesota's Prairie Pothole Region.
This Phase 8 request for Ducks Unlimited's Living Lakes program will enhance or restore 1,070 acres of wetlands and adjacent prairie grasslands for the U.S. Fish & Wildlife Service and Minnesota DNR on public lands and private lands under permanent USFWS easement. Where required, DU engineers will design water control structures to restore wetland hydrology and allow active management of shallow lake water levels to enhance their ecology for ducks, other wildlife, and people, primarily in Minnesota's Prairie Pothole Region.
Provide approximately 15 matching grants for local parks, trail, acquisition of natural areas and trails to connect people safety to desirable community locations and regional or state facilities.