We will compile all available data for Minnesota Trumpeter Swans and use these sources to model historical population abundance and predict future population dynamics.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.
The Kairos Alive! Cultural Wisdom Immersion and Sharing Project collaborates with Centro Tyrone Guzman, Augustana Open Circle, Walker West Music Academy and outstate Developmental Achievement Centers to explore and exchange joyful cultural meaning through music, dance, song and story via 2-way Zoom webcast. Project explores cultural heritage and identity expression, and how it relates to the universality of human experience, in an environment of creative safety and intercultural exchange.
The consultant LimnoTech will support response to Total Maximum Daily Load (TMDL) comments the peer review process, United States Environmental Protection Agency and public notice. They will then revise the TMDL document as needed and attend internal and external project meetings.
The goal of this project is to finalize the Lake Pepin Watershed phosphorus total maximum daily load (TMDL) report by using the existing information and documentation prepared under previous contracts to prepare one TMDL report that addresses the impairments on the mainstem of the Mississippi River. Information developed to date for draft TMDLs on the Minnesota River mainstem will be documented for later use by the Minnesota Pollution Control Agency.
The goal of this project is to support the Minnesota Pollution Control Agency (MPCA) in responding to public comments on the Lake Pepin Watershed Phosphorus Total Maximum Daily Loads (TMDLs), which were prepared by LimnoTech under previous phases of the project.
Little Rock Lake,in Benton County, is negatively impacted for nutrients. Little Rock Lake is a significant regional recreational lake. Toxins released by blue green algae blooms have been the highest ever measured by the Minnesota Department of Health. Given the importance of this resource and the severity of the water quality problems, obtaining tangible water quality improvements is a high priority in the Benton and Morrison County local water management plans.
The water quality and recretional value of Little Rock is negatively impacted by phosphorus. One important strategy involves reducing the quantity of phosphorus imported to the watershed through animal feeding operations. Farm management strategis coupled with traditional conservation practices will reduce surface runoff and phosphorus transport from feedlots and fields. This project will assist corporate poultry industry and local farmers to put into practice animal feed management strategies that reduce the amount of phosphorus contained in chicken feed rations.
Little Rock Creek, a cold-water trout stream in central Minnesota, is impaired due to the lack of trout and other cold water fish. The trout are absent because of high water temperatures, low dissolved oxygen and high nitrate levels, stressors caused from a lack of base flow and overuse of groundwater. This project continues a 2011 initiative to assist irrigators in the Little Rock Creek groundwater recharge area with managing the timing and amount of irrigation applied to their crops.
The Little Rock Lake Total Maximum Daily Load study has identified areas in the watershed where phosphorus reduction is needed and what best management practices need to be applied. This is a coordinated implementation effort with Benton and Morrison Soil and Water Conservation Districts and Natural Resources Conservation Service, the Little Rock Lake Association, the livestock industry and other partners to install best management practices at numerous sites to continue cleaning up Little Rock Lake.
This Phase 6 request for Ducks Unlimited’s Living Lakes program will enhance 1,000 acres of shallow lakes and restore 50 acres of small wetlands by engineering and installing water control structures for Minnesota DNR and U.S. Fish & Wildlife Service on public lands and wetlands under easement. Structures will be used by DNR and Service partners to restore wetland hydrology and actively manage shallow lake water levels to enhance their ecology for ducks, other birds, and hunters in the Prairie Region of Minnesota.
Ducks Unlimited successfully enhanced 3,437 wetland acres and restored 83 wetland acres through this grant, which significantly exceeds our grant acre goals of 2,000 acres of wetland enhancement and 50 acres of wetlands restored for this 2017 OHF appropriation.
This Phase 7 request for Ducks Unlimited's Living Lakes program will enhance 1,160 acres of shallow lakes and restore 120 acres of small wetlands by engineering and installing water control structures for Minnesota DNR and U.S. Fish & Wildlife Service on public lands and wetlands under easement. Structures will help DNR and Service agency partners restore wetland hydrology and actively manage shallow lake water levels to enhance their ecology for ducks, other birds, and hunters in Minnesota's Prairie Pothole Region.
Phase 2 of Ducks Unlimited's ongoing engineering program restored and enhanced shallow lakes and wetlands by installing water level control structures to improve aquatic plant abundance and water clarity in partnership with the Minnesota DNR and U.S.
This Phase 9 request for Ducks Unlimited's Living Lakes program will enhance or restore 1,440 acres of wetlands and adjacent prairie grasslands for the U.S. Fish & Wildlife Service and Minnesota DNR on public lands and private lands under permanent easement. DU biologists and engineers will design wetland restorations and water control structures for active management of shallow lake water levels to enhance their ecology for ducks, other wildlife, and people, primarily in SW Minnesota's Prairie Pothole Region.
This Phase 10 request for Ducks Unlimited's Living Lakes program will enhance or restore 1,325 acres of wetlands and adjacent prairie grasslands for the U.S. Fish & Wildlife Service and Minnesota DNR on public lands and private lands under permanent easement. DU biologists and engineers will design wetland restorations and water control structures for active management of shallow lake water levels to enhance their ecology for ducks, other wildlife, and people, primarily in SW Minnesota's Prairie Pothole Region.
This Phase 8 request for Ducks Unlimited's Living Lakes program will enhance or restore 1,070 acres of wetlands and adjacent prairie grasslands for the U.S. Fish & Wildlife Service and Minnesota DNR on public lands and private lands under permanent USFWS easement. Where required, DU engineers will design water control structures to restore wetland hydrology and allow active management of shallow lake water levels to enhance their ecology for ducks, other wildlife, and people, primarily in Minnesota's Prairie Pothole Region.
Provide approximately 15 matching grants for local parks, trail, acquisition of natural areas and trails to connect people safety to desirable community locations and regional or state facilities.
The project will plan, implement, and report on a community engagement strategy for identifying community/landowner opportunities, obstacles, and opinions on land management and water quality that will result in the identification of Watershed Restoration and Protection Strategies (WRAPS) input for the Sibley, Nicollet, Renville, McLeod, Rice, and Le Sueur County areas of the Lower Minnesota River watershed.
Leveraging new statewide climate data, we will assess future change in the duration, frequency and magnitude of heavy precipitation and drought events and engage communities to prepare for these extremes.
The Benton County Local Water Management Plan's first priority concern is feedlot and nutrient management. Our objective is to reduce or minimize the negative impact of animal manure and fertilizer on surface and ground water by increasing the adoption of feedlot, manure, fertilizer and pasture best management practices.
The Benton SWCD is applying to use Clean Water funds to work with livestock producers in implementing a variety of BMPs including, but not limited to cropland erosion control projects (water and sediment control basins, grade stabilization structures), extending buffers where appropriate to exceed state buffer laws, riparian pasture management and conversion to other uses, nutrient management and feedlot pollution control systems. Our goal is to reduce runoff from these sites and improve water quality within the Mayhew Lake and Big Elk Lake watersheds.