We propose to integrate Minnesota Wildflowers Information, an online tool for plant identification, with the Minnesota Biodiversity Atlas, to preserve and extend this popular ENTRF-supported resource for future use.
This project helps Minnesota entities that directly or indirectly cause PFAS and microplastics contamination stop the flow of the contaminants by developing strategies to manage solid waste streams.
To hire a qualified historical architect and engineer to prepare an assessment of the foundation of Terrace Mill, listed in the National Register of Historic Places
Funding was used to design, install and evaluate deterrent barrier options in Minnesota and to cost share a barrier in northwest Iowa to limit or slow the movement of Invasive carp.
Protect and restore 590 acres of significant wildlife habitat through conservation easements and restoration projects on private lands within Important Bird Areas with an emphasis on those located in within priority areas identified in the Minnesota Prairie Conservation Plan.
Lake Minnewaska, a highly used recreational lake, is the largest body of water in Pope County. While scientific studies show that the transparency in Lake Minnewaska has been increasing over the last 30 years, there are numerous ravines on the south shore of Lake Minnewaska that could threaten this trend. The erosion in these ravines is causing large amounts of sediment and phosphorus to be dumped directly into Lake Minnewaska. After a storm in 2011, many trees vegetating the ravines were blown down, ripping out the roots and further exposing the soil along these ravines.
We will characterize environmental drivers contributing to the decline of wild rice using lake sediment cores to reconstruct historical wild rice abundance in relation to lake and watershed stressors.
The purpose of this project is to improve understanding of primary productivity in the Red River and the diversity and population structure of the algal communities occurring along the river system. This will be accomplished through taxonomic identification of periphyton and phytoplankton assemblages necessary for characterizing responses to nutrient gradients along the Red River of the North.
Inert museum storage was created for the ethnographically and historically significant Helbing Collection of American Indian Arts and Crafts as recommended in a museum assessment.
The RIM-WRP program will expand past efforts and provide important benefits to the citizens of Minnesota by restoring and permanently protecting priority wetlands and associated upland native grassland wildlife habitat via perpetual conservation easements. This funding will leverage $12.6 million of federal WRP funds for the State of Minnesota and is expected to create and sustain 343 jobs and income to local landowners, businesses and others in the state based on USDA economic estimates.
The Reinvest in Minnesota (RIM) Reserve Wetlands Reserve Program (WRP) Partnership will accelerate the restoration and protection of approximately 4,620 acres of previously drained wetlands and associated upland native grassland wildlife habitat complexes via perpetual conservation easements. The goal of the RIM-WRP Partnership is to achieve the greatest wetland functions and values, while optimizing wildlife habitat on every acre enrolled in the partnership.
RIM Wetlands - Restoring the most productive habitat in Minnesota will protect and restore approximately 495 acres of previously drained wetlands and adjacent native grasslands on approximately 11 easements across the State to restore wetlands and associated uplands for habitat and associated benefits. The Board of Water and Soil Resources (BWSR) will utilize the Reinvest in Minnesota (RIM) easement program in partnership with local Soil and Water Conservation District (SWCDs) to target, protect and restore high priority habitat.
Using the Reinvest in Minnesota (RIM) program, this project addressed the potential loss of grassland habitats from conversion to cropland and accelerate grassland protection efforts not covered by other programs. Focusing on Minnesota Prairie Plan-identified landscapes and working in coordination with established Prairie Conservation Plan Local Technical Teams (LTTs), this project fulfilled the accomplishment plan goal of enrolling 710 acres of grassland habitat in permanent conservation easements by completing more easements than estimated, for a total of 13 easements.
The Clean Water Fund (CWF) and Outdoor Heritage Fund (OHF) were used together to secure easements on buffer areas. 25 easements have been recorded for a total of 672.1 acres and are reported in the output tables for the final report (acre total does not include Clean Water Fund acres). The total acreage from both CWF and OHF sources for recorded easements is 1,152.4 acres. Only the OHF acres are being reported in this final report to be consistent with the approved accomplishment plan.
The Clean Water Fund (CWF) and Outdoor Heritage Fund (OHF) were used together to secure easements on buffer areas. 84 easements have been recorded for a total of 1,441 acres and are reported in the output tables for the final report (acre total does not include Clean Water Fund acres). The total acreage from both CWF and OHF sources for recorded easements is 2,793.2 acres. Only the OHF acres are being reported in this final report to be consistent with the approved accomplishment plan.
This program is a part of a comprehensive clean water strategy to prevent sediment and nutrients from entering our lakes, rivers, and streams; enhance fish and wildlife habitat; protect groundwater and wetlands. Specifically the Riparian Buffer Easement Program targets creating buffers on riparian lands adjacent to public waters, except wetlands. Through the Reinvest in Minnesota Program (RIM) and in partnership with Soil and Water Conservation Districts and private landowners, permanent conservation easements are purchased and buffers established.
We propose identifying hot spots of groundwater chloride pollution of surface waters due to excessive road salt use, which is a long term source increasing chloride impairment of surface waters.