Fourteen permanent RIM Easements on 766 acres of high quality, riparian and forested habitat have been recorded and will provide lasting wildlife habitat. Attempts were made to acquire three tracts in fee title that would have relied on this funding. The owner of one tract rejected an offer of the certified appraised value. Acquisition attempts on the other two tracts were discontinued when it became apparent that the planned use of the land as DNR Wildlife Management Area would be incompatible with local government plans for future municipal growth.
This project strives to continue progress towards the sediment and nutrient reduction goals for the Buffalo River. Specific targeted practices and quantities include Water and Sediment Control Basins (110), Grade Stabilizations (7), Grassed Waterways (10), Critical Area Plantings (12), Filter Strips (45 ac.), Cover Crops (2,500 ac/year), Rotational Grazing/Use Exclusion (320 ac), Wetland Restoration (86 ac).
This project strives to make further, substantial steps towards the sediment and nutrient reduction goals for Buffalo River Watershed District's (BRRWD) Mainstem and Lakes Planning Region and the objectives of the Buffalo-Red River Comprehensive Watershed Management Plan adopted in 2021.
Turtle Island Skywatchers - Innovative Research and Data Visualization project works to protect Minnesota water, wildlife, and natural resources while empowering Indigenous youth as leaders and all citizens as researchers.
We will reconstruct historical lake conditions to identify factors linked to successful walleye fisheries and guide effective management in the face of warming temperatures, invasive species, and nutrient loading.
The goal of this project is to assess groundwater sustainability in the I-94 corridor between the Twin Cities and St. Cloud due to the corridor's significant expected growth, the inerent natural limits of groundwater, and the vulnerability of groundwater to contamination.
Minnesotans increasingly value native fishes. For example, >95% of bowfished species in MN are native, yet all are poorly understood. Foundational natural resource data is absolutely necessary for all stakeholders.
Our goals are to engage 100,000 underserved youth statewide in environmental education, engaging them in the conservation and preservation of Minnesota wilderness through the experiences in the outdoors.
This project will provide the monitoring of reaches where there are data gaps, incorporate new data and analyze relevant data, identify pollutant sources, hold a stakeholder meeting, and gather information towards the future development of a Draft Restoration (TMDL) and Protection Plan.
Phase II of the Upper South Branch Project will continue a FY2011 CWF project with the strategic implementation of conservation practices within the Upper South Branch of the Buffalo River watershed. This second phase will result in approximately 305 acres of new filter strips, 50 side inlet sediment control structures, and 8 sediment control basins which will reduce sediment loading to the stream by 4,700 tons/year and phosphorus by 9,700 pounds/year.
The main outcome of the project will be the development of a Total Maximum Daily Load (TMDL) study that address total suspended solids/turbidity impairments of the Mississippi River (Swan River to Crow Wing River). Community outreach to communicate the results and strategies for restoration will also take place during this project.
The main outcome of the project will be development of a Total Maximum Daily Load (TMDL) study that address total suspended solids/turbidity impairments of the Mississippi River (Swan River to Crow Wing River). Community outreach to communicate the results and strategies for restoration will also take place during this project.
This project will support the monitoring of reaches where there are data gaps, incorporate new data and relevant data, continue identification of pollutant sources, complete load duration curves, coordinate and encourage participation in stakeholder meetings. The information gathered during Phase IIB will be utilized towards the development of a Draft Restoration (TMDL) and Protection Plan (Plan).
This project will extend the simulation period for the Hydrological Simulation Program - FORTRAN (HSPF) models for the Grand Rapids, Brainerd, Crow Wing, Redeye, Long Prairie, Sartell, Sauk, St. Cloud, and Crow watersheds, and review and comment on the calibration.
This project will extend, calibrate, and validate watershed models using the Hydrological Simulation Program - FORTRAN (HSPF) watershed model for the Mississippi Headwaters, Leech Lake, Pine, and South Fork Crow Watersheds.
The primary goal of this project is to examine the calibration and validation of recently extended Hydrological Simulation Program – FORTRAN (HSPF) watershed models for the Mississippi River-Headwaters, Mississippi River-Grand Rapids, Mississippi River-Brainerd, Mississippi River-Sartell, Mississippi River-St. Cloud, Leech Lake, Pine River, Crow Wing River, Long Prairie River, and Redeye River watersheds and revise the calibration.
The Upper Buffalo River Sediment Reduction Project area lies in the first major land use transition within the buffalo's flowage, where intact forests and modestly developed lakes give way to altered hydrology and tilled fields of highly productive soils near the top of the Red River Basin. This abrupt change in land use within the watershed is directly linked to stream impairments within the project area.
A joint effort of Becker and Clay Soil and Water Conservation District, the Buffalo Red Shallow Lakes and Mainstem Improvement Strategy will reduce nutrient and sediment delivery to 12 impaired lakes and impaired reaches of the Buffalo River through a targeted and prioritized approach to the implementation of Best Management Practices (BMPs). Numerous models have been combined with local knowledge to identify chief sources of constituents in the watershed and to isolate and prioritize implementation sites demonstrating the most significant gains in water quality.
Use mobile AI-assisted technologies to survey lake visitors. Assess perceptions of water quality and perceived threats. Combine survey data with water quality data and trend monitoring to inform lake management.
This proposal seeks to prevent nitrate contamination in and around vulnerable Non-Community (Transient and Non-Transient) Public Water Supplies within the sandy outwash plains of the Mississippi River in Central Minnesota. Within the work area we have identified 221 public (non-municipal) water supplies in this area which include places of worship, restaurants, office spaces, bars, daycares and campgrounds within the Morrison and Benton County work area.
The Red River is impaired for turbidity. The level of turbidity is a significant factor in the cost of treatment of drinking water by the City of Moorhead. This water quality improvement project involves the retrofit of Clay County Ditches 9, 32, and 33 just south of the city. The project involves the installation of an estimated 87 side inlet sediment controls and 35 acres of buffer strips. All three of these ditch systems with over 16 miles of County Ditch will be treated for sediment and erosion control with the installation of conservation practices.
Minnesota Sea Grant seeks to create a science-policy fellowship program to train Minnesota's science-policy workforce and advance Minnesota's water resource policy, emulating Sea Grants successful federal-level fellowship program.
We propose robotics-based educational activities for middle-school youth on water quality in Minnesota. Youth will gain skills for measuring water quality and communicating results through group study and hands-on projects.
This proposal will fund technical assistance for nutrient management planning to accelerate water quality improvements with the 12-county West Central Technical Service Area (WCTSA). A needs assessment identified an estimated 156 certified nutrient management plans that will be needed over a 3 year period. Of the 71 SWCD employees in the WCTSA, only 1 SWCD staff member is dedicated to nutrient management planning. To meet technical assistance needs, this grant will fund a Regional Planning Specialist (RPS) to address local resource concerns.
The West Central Technical Service Area (WCTSA) serves 12 Soil and Water Conservation Districts (SWCDs) in west central Minnesota and has been experiencing increased workload due to greater requests from member SWCDs. This funding will sustain a limited-term technician and purchase related support equipment to assist landowners in implementing targeted, high priority practices that result in the greatest water quality outcomes.
Phase 8 of the Wetland Habitat Protection and Restoration Program will result in the protection of 745 acres of high priority wetland habitat complexes in Minnesota's Prairie, Forest-Prairie Transition and Northern Forest areas by securing permanent conservation easements within scientifically prioritized habitat complexes. The Minnesota Land Trust will use its innovative market-based landowner bid model to maximize conservation benefit and financial leverage in protection project selection.
Over the past five years, awareness of our organization has spread across the state. As a result, our attendance numbers have grown by 66%. We regularly hit max capacity, and the demand for outreach programs has gone up. Ex-S.T.R.E.A.M. expansion addresses three specific elements: 1) New space: Renting an additional 2,800 sq. ft of exhibit space to address spatial constraints.
1. Contract Ojibwe Language Consultant(s) to work within our White Earth Child Care and White Earth Head Start programs to provide support and guidance in Ojibwe Language Development for our youngest learners.
Develop and create an Ojibwe Language Resource Kit for our White Earth Ojibwemowin Teachers who have attained Eminence. Provide technology for Ojibwemowin Teachers to utilize language apps and programs in the classroom and during community gatherings. White Earth will establish virtual weekly community Language Tables. White Earth will establish virtual weekly Teacher language tables, closed to the public.