Phase II of the Upper South Branch Project will continue a FY2011 CWF project with the strategic implementation of conservation practices within the Upper South Branch of the Buffalo River watershed. This second phase will result in approximately 305 acres of new filter strips, 50 side inlet sediment control structures, and 8 sediment control basins which will reduce sediment loading to the stream by 4,700 tons/year and phosphorus by 9,700 pounds/year.
This project will extend the simulation period for the Hydrological Simulation Program - FORTRAN (HSPF) models for the Grand Rapids, Brainerd, Crow Wing, Redeye, Long Prairie, Sartell, Sauk, St. Cloud, and Crow watersheds, and review and comment on the calibration.
The primary goal of this project is to examine the calibration and validation of recently extended Hydrological Simulation Program – FORTRAN (HSPF) watershed models for the Mississippi River-Headwaters, Mississippi River-Grand Rapids, Mississippi River-Brainerd, Mississippi River-Sartell, Mississippi River-St. Cloud, Leech Lake, Pine River, Crow Wing River, Long Prairie River, and Redeye River watersheds and revise the calibration.
This project will provide MPCA staff, local partners and citizen volunteers with a framework for building local capacity to design civic engagement and communication/outreach efforts that will contribute to meaningful and sustained public participation in surface water protection and restoration activities throughout the watershed.
Portions of the South Branch of the Buffalo River are currently overloaded with sediment. Two primary waterways in the watershed, Deerhorn Creek and the South Branch, are listed as impaired for turbidity. Due to sediment deposition in the channel, the waterways have lost much of their capacity. Historical attempts by landowners and others to restore the capacity of the channel by removing sediment have had limited success due to additional excess sediment being washed into the channel.
Minnesota's twelve regional library systems, which encompass more than 350 public libraries in all areas of the state, can benefit from a portion of the Legacy Amendment's Arts and Cultural Heritage Fund. Through State Library Services, a division of the Minnesota Department of Education, each regional library system is eligible to receive a formula-driven allocation from the annual $2.5 million Minnesota Regional Library System Legacy Grant. Viking Library System (VLS) is a federated regional public library system with central services located in central western Minnesota.
Minnesota's twelve regional library systems, which encompass more than 350 public libraries in all areas of the state, can benefit from a portion of the Legacy Amendment's Arts and Cultural Heritage Fund. Through State Library Services, a division of the Minnesota Department of Education, each regional library system is eligible to receive a formula-driven allocation from the annual $2.5 million Minnesota Regional Library System Legacy Grant. Viking Library System (VLS) is a federated regional public library system with central services located in central western Minnesota.
Minnesota’s 12 regional public library systems, which encompass 350 public libraries in all areas of the state, benefit from a portion of the Legacy Amendment’s Arts and Cultural Heritage Fund. Through State Library Services, a division of the Minnesota Department of Education, each regional public library system receives a formula-driven allocation from the annual $3 million Minnesota Regional Library Legacy Grant.
Minnesota’s Legacy Amendment raises revenue for Clean Water, Outdoor Heritage, Parks and Trails, and Arts and Cultural Heritage. Libraries are beneficiaries of a portion of the Arts and Cultural Heritage Funding.
Minnesota’s 12 regional public library systems, which encompass 350 public libraries in all areas of the state, benefit from a portion of the Legacy Amendment’s Arts and Cultural Heritage Fund. Through State Library Services, a division of the Minnesota Department of Education, each regional public library system receives a formula-driven allocation from the annual $3 million Minnesota Regional Library Legacy Grant.
Minnesota’s twelve regional library systems, which encompass more than 350 public libraries in all areas of the state, can benefit from a portion of the Legacy Amendment’s Arts and Cultural Heritage Fund. Through State Library Services, a division of the Minnesota Department of Education, each regional library system is eligible to receive a formula-driven allocation from the annual $2.2 million Minnesota Regional Library System Legacy Grant. Viking Library System (VLS) is a federated regional public library system with central services located in central western Minnesota.
Minnesota's twelve regional library systems, which encompass more than 350 public libraries in all areas of the state, can benefit from a portion of the Legacy Amendment's Arts and Cultural Heritage Fund. Through State Library Services, a division of the Minnesota Department of Education, each regional library system is eligible to receive a formula-driven allocation from the annual $2.5 million Minnesota Regional Library System Legacy Grant.
Use mobile AI-assisted technologies to survey lake visitors. Assess perceptions of water quality and perceived threats. Combine survey data with water quality data and trend monitoring to inform lake management.
This project will utilize eight surface water sites in the Redeye River Watershed to collect chemical samples and complete field analysis that will be helpful in determining the health of the streams in the watershed. The Redeye River Watershed contains three main rivers (Red Eye, Leaf, and Wing) that drain to the Crow Wing River and ultimately to the Mississippi River. Main concerns in this watershed are low dissolved oxygen levels, excess sediment, increased drainage and flow alterations, and high bacteria levels.
The Red River is impaired for turbidity. The level of turbidity is a significant factor in the cost of treatment of drinking water by the City of Moorhead. This water quality improvement project involves the retrofit of Clay County Ditches 9, 32, and 33 just south of the city. The project involves the installation of an estimated 87 side inlet sediment controls and 35 acres of buffer strips. All three of these ditch systems with over 16 miles of County Ditch will be treated for sediment and erosion control with the installation of conservation practices.
Minnesota Sea Grant seeks to create a science-policy fellowship program to train Minnesota's science-policy workforce and advance Minnesota's water resource policy, emulating Sea Grants successful federal-level fellowship program.
We propose robotics-based educational activities for middle-school youth on water quality in Minnesota. Youth will gain skills for measuring water quality and communicating results through group study and hands-on projects.
Funds used to address water infiltration of museum collections storage by improving exterior drainage.
Water from melting snow and rainfall has been leaking into the museum's agricultural wing artifact storage room and Main Street exhibit gallery due to inadequate drainage and insufficient landscaping on the building's north side.
Tetra Tech will work to support the science needed when planning in Minnesota for water storage practice implementation. The goal is to provide practical water storage recommendations that can be incorporated into smaller scale planning within major watersheds (HUC 8), as well as larger scale planning for the Sediment Reduction Strategy for the Minnesota River and South Metro Mississippi River.
This program is a part of a comprehensive clean water strategy to prevent sediment and nutrients from entering our lakes, rivers, and streams; enhance fish and wildlife habitat; protect groundwater and wetlands. Specifically the Wellhead Protection Conservation Easement program is targeted to protect drinking water through the Reinvest in Minnesota Program (RIM).
Phase 4 of the Wetland Habitat Protection and Restoration Program will result in the protection of 800 acres of high priority wetland habitat complexes in Minnesota’s Prairie and Forest-Prairie Transition areas by securing permanent conservation easements within scientifically prioritized habitat complexes. The Minnesota Land Trust will use its innovative landowner bid model to maximize conservation benefit and financial leverage in protection project selection.
Phase 6 of the Wetland Habitat Protection and Restoration Program will result in the protection of 1,213 acres of high priority wetland habitat complexes in Minnesota's Prairie and Forest-Prairie Transition areas by securing permanent conservation easements within scientifically prioritized habitat complexes. The Minnesota Land Trust will use its innovative market-based landowner bid model to maximize conservation benefit and financial leverage in protection project selection.
Phase 5 of the Wetland Habitat Protection and Restoration Program will result in the protection of 1,040 acres of high priority wetland habitat complexes in Minnesota's Prairie and Forest-Prairie Transition areas by securing permanent conservation easements within scientifically prioritized habitat complexes. The Minnesota Land Trust will use its innovative market-based landowner bid model to maximize conservation benefit and financial leverage in protection project selection.
Fourteen conservation easements were completed by this program resulting in the protection of 1,962 acres of high quality wetland and associated upland habitat complexes and 78,596 feet (approximately 15 miles) of shoreland along priority lakes and rivers in west-central Minnesota. This program exceeded by 862 acres the amount proposed for the grant. Total leverage through donated easements by landowners is estimated at $1,209,700, all in excess of that proposed.
Protect 750 acres of high priority wetland habitat complexes in Minnesota’s Prairie/Forest-Prairie areas by securing permanent conservation easements within scientifically prioritized complexes using an innovative project ranking and payment system to maximize conservation benefit and financial leverage.
Phase 8 of the Wetland Habitat Protection and Restoration Program will result in the protection of 745 acres of high priority wetland habitat complexes in Minnesota's Prairie, Forest-Prairie Transition and Northern Forest areas by securing permanent conservation easements within scientifically prioritized habitat complexes. The Minnesota Land Trust will use its innovative market-based landowner bid model to maximize conservation benefit and financial leverage in protection project selection.
The Wetland Habitat Protection and Restoration Program implements conservation of high priority wetland habitat complexes within Minnesota's Prairie, Forest-Prairie Transition and Northern Forest areas. Phase 9 of the Wetlands Program will focus on restoration and enhancement of 983 acres of high priority wetlands and associated prairies to benefit important waterfowl and SGCN populations. Restoration and enhancement work will be managed by the Minnesota Land Trust, in partnership with the U.S. Fish and Wildlife Service.
Through its Wetland Habitat Protection and Restoration Program - Phase 3 grant, the Minnesota Land Trust protected 666 acres and restored/ enhanced 954 acres of high priority wetland habitat complexes in Minnesota's Prairie and Forest-Prairie Transition areas by securing permanent conservation easements within scientifically prioritized habitat complexes and working with partners in restoration/enhancement.
Phase 7 of the Wetland Habitat Protection and Restoration Program will result in the protection of 1,144 acres of high priority wetland habitat complexes in Minnesota's Prairie and Forest-Prairie Transition areas by securing permanent conservation easements within scientifically prioritized habitat complexes. The Minnesota Land Trust will use its innovative market-based landowner bid model to maximize conservation benefit and financial leverage in protection project selection.
Wolverton Creek is a 25 mile long tributary to the Red River of the North. Its watershed drains approximately 105 square miles located in Wilkin and western Clay Counties. Wolverton Creek is the outlet for numerous ditch systems and natural drainage in the area and is a significant contributor of sediment to the Red River. The City of Moorhead and other downstream communities obtain drinking water from the Red River. Since 85% of Moorhead's drinking water comes from the Red River, high turbidity results in
higher treatment costs for their drinking water system.
The United States Environmental Protection Agency (USEPA) requires the Minnesota Pollution Control Agency (MPCA) to carry out the Total Maximum Daily Load Program (TMDL) in the state of Minnesota. Minnesota has an abundance of lakes and river reaches, many of which will require a TMDL study. In an effort to expedite the completion of TMDL projects, the MPCA has decided to construct watershed models. These models have the potential to support the simultaneous development of TMDL studies for multiple listings within a cataloging unit or 8-digit Hydrologic Unit Code watershed.
Adoption of renewable energy technologies and energy conservation practices can contribute in a variety of ways to the environmental and economic health of rural Minnesota communities through costs savings and emissions reductions. Engaging and coaching students as the leaders in the process of implementing such practices provides the added benefit of increasing knowledge, teaching about potential career paths, and developing leadership experience.