Use mobile AI-assisted technologies to survey lake visitors. Assess perceptions of water quality and perceived threats. Combine survey data with water quality data and trend monitoring to inform lake management.
This proposal seeks to prevent nitrate contamination in and around vulnerable Non-Community (Transient and Non-Transient) Public Water Supplies within the sandy outwash plains of the Mississippi River in Central Minnesota. Within the work area we have identified 221 public (non-municipal) water supplies in this area which include places of worship, restaurants, office spaces, bars, daycares and campgrounds within the Morrison and Benton County work area.
Minnesota Sea Grant seeks to create a science-policy fellowship program to train Minnesota's science-policy workforce and advance Minnesota's water resource policy, emulating Sea Grants successful federal-level fellowship program.
We propose robotics-based educational activities for middle-school youth on water quality in Minnesota. Youth will gain skills for measuring water quality and communicating results through group study and hands-on projects.
This is a joint project between the United States Geological Survey (USGS), Minnesota Pollution Control Agency (MPCA), North Dakota, and Manitoba. The project is a basin-wide, up-to-date water quality trend analysis using the "QWTrend" program for approximately 40 bi-national river sites to review nutrients, total suspended solids, total dissolved solids, sulfate and chloride from 1980 - 2015.
This proposal will fund technical assistance for nutrient management planning to accelerate water quality improvements with the 12-county West Central Technical Service Area (WCTSA). A needs assessment identified an estimated 156 certified nutrient management plans that will be needed over a 3 year period. Of the 71 SWCD employees in the WCTSA, only 1 SWCD staff member is dedicated to nutrient management planning. To meet technical assistance needs, this grant will fund a Regional Planning Specialist (RPS) to address local resource concerns.
The West Central Technical Service Area (WCTSA) serves 12 Soil and Water Conservation Districts (SWCDs) in west central Minnesota and has been experiencing increased workload due to greater requests from member SWCDs. This funding will sustain a limited-term technician and purchase related support equipment to assist landowners in implementing targeted, high priority practices that result in the greatest water quality outcomes.
Over the past five years, awareness of our organization has spread across the state. As a result, our attendance numbers have grown by 66%. We regularly hit max capacity, and the demand for outreach programs has gone up. Ex-S.T.R.E.A.M. expansion addresses three specific elements: 1) New space: Renting an additional 2,800 sq. ft of exhibit space to address spatial constraints.
Phase 2 of the Wild Rice River Watershed Restoration and Protection Strategy (WRAPS) project includes: continued civic engagement; production of the Total Maximum Daily Load (TMDL) study, which allocates pollutant load reductions for impaired waters; and production of the WRAPS report, which identifies implementation strategies that will maintain or improve water quality in many lakes and streams throughout the watershed.
Assesss current data sources and preliminary information about the conditions in the watershed and present the information through bibliographies, abstracts and memos.
This Corridor Habitat Restoration Project is a cooperative effort between the District (WRWD), MN Board of Soil and Water Resources (MNBWSR), MN DNR, and Red River Watershed Management Board (RRWMB). This is a voluntary program with the long-term goal to restore a natural corridor area along the Lower Reach of the Wild Rice River. When completed, the project will restore 23 channelized river miles to 50 miles of natural stream channel.
Adoption of renewable energy technologies and energy conservation practices can contribute in a variety of ways to the environmental and economic health of rural Minnesota communities through costs savings and emissions reductions. Engaging and coaching students as the leaders in the process of implementing such practices provides the added benefit of increasing knowledge, teaching about potential career paths, and developing leadership experience.