This project will review highly erodible land plans for landowner/operator compliance and update plans with landowners that are not meeting plan requirements due to changes in their operations.
Pond enhancement project to repair and expand an existing man made pond to improve outdoor recreational opportunities for park visitors that use the pond for fishing, boating and wildlife viewing.
The Ralph Engelstad Arena in Thief River Falls is the premier high school hockey arena in the State of Minnesota. The Arena fills two city blocks and is covered by 85-90% impervious (hard) surface. Rainfall events completely inundate roads and sidewalks, overloading the stormsewer system. Larger events cause water to stand high enough to reach the front steps to the Arena. Roof runoff produces large amounts of water running from the downspouts. Runoff has made sod establishment on the grounds difficult. Washouts have developed carrying sediment to the stormsewer.
This project will collect real-time parameter data for specific conductance, water temperature, pH, dissolved oxygen, turbidity and stream flow at the United States geological Survey (USGS) gaging stations located at Fargo, ND and Grand Forks, ND on the Red River of the North; and publish the data both on the USGS NWIS website and in the USGS Annual Report.
Given access to resources & training, educators are in powerful positions to share stories of the people living on the land we call Minnesota. Through the work of Dr. Mato Nunpa, a team of Indigenous scholars & community interviews, Speaking Out Collective will examine how mass murder, wholesale land theft, enslavement and extermination were justified and taught in schools. By centering silenced Indigenous narratives, this project invites students, educators & districts to reconsider MN history.
We will characterize environmental drivers contributing to the decline of wild rice using lake sediment cores to reconstruct historical wild rice abundance in relation to lake and watershed stressors.
The Red Lake Watershed District will collect water chemistry samples, field measurements, and photos at water quality stations in the Thief River Watershed that have been prioritized for Intensive Watershed Monitoring. This sampling effort will allow for an unbiased assessment of stream conditions for aquatic life and aquatic recreation. Eleven stream monitoring stations have been selected for this monitoring effort. Sampling will be conducted during the years 2022 and 2023 so that data is available for assessment in 2024.
This project will support water quality monitoring and data analysis in nine major watersheds (8-digit Hydrologic Unit Codes) of the Lower Red River Basin. The monitoring will assist in providing water chemistry data needed to calculate annual pollutant loads for the Major Watershed Load Monitoring Program (MWLMP) and provide short term data sets of select parameters to other MPCA programs.
This project will provide land and water managers in the Red River Basin with data and online tools to prioritize actions on the landscape that achieve water quality objectives identified in local and state plans. This will help identify strategically important locations for implementing erosion control and water management practices. Standardized watershed-based data products will be integrated into a web-based planning tool which will be added to the Red River Basin Decision Information Network (RRBDIN) being developed as part of the Red River Watershed Feasibility Study.
Impaired waters in the Red Lake River 1W1P are categorized into management classes to target impaired waters that are closest to meeting water quality standards and to protect unimpaired waters close to becoming impaired. Management areas targeted in 2018 and 2019 include the Little Black River, Black River, County Ditch 96, the Red Lake River between Thief River and Crookston, Burnham Creek, and Grand Marais Creek.
This project is for Minnesota Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, to work with regional partners to promote understanding and protection of watersheds, and to organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
This project is for Minnesota Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, to work with regional partners to promote understanding and protection of watersheds, and to organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
The International Water Institute (IWI) will monitor 42 sites (3 basin, 12 major watershed, and 27 subwatershed) in the Red River and Upper Mississippi River Basins intensively during the contract period. There will also be 5 sites in the Red River Basin where mercury samples will be collected and sent to Minnesota Department of Health for analysis. The IWI will collect water samples across the range of flow conditions targeting sample collection at times of moderate to high flow.
This project will develop an effective transferable model to engage and educate watershed residents, stakeholders and others to better understand and protect watershed ecostystems through environmental monitoring, training, and formal and informal education programs in their local watershed. The project will build on the foundation of the existing Red River Basin River Watch program by strengthening three main activity areas: 1) curriculum integration and teacher training, 2) youth leadership and civic engagement, and 3) applied research collaboration and watershed science skills building.
The Red Lake Watershed District will create an inspection database for 103E ditches under their drainage authority. The district will acquire a database software solution to conduct field inspections and to track ditch maintenance projects and use the software to facilitate compliance with state statutes. The project will also develop a process for completing the annual inspection and reporting requirements under Statue 103E.
This project will monitor nine locations in the major watersheds (8-digit Hydrologic Unit Codes) of the Lower Red River Basin. The stream outlet monitoring will provide the water chemistry data needed to calculate annual pollutant loads. Staff from the Red River Watershed Management Board (RRWMB) will conduct the sampling, initially manage the data and provide the data to the Minnesota Pollution Control Agency (MPCA) for load calculations and import into the STORET data system.
The goal of this project is to extend, calibrate, and validate the existing Hydrological Simulation Program – FORTRAN (HSPF) watershed models in the Red Lake River, Thief River, Clearwater River and Red Lake watersheds.
International Water Institute (IWI) staff will monitor 24 sites in the Bois de Sioux, Mustinka (2 sites), Buffalo (8 sites), Red Lake (4 sites), Sandhill (3 sites), Thief (2 sites), and Tamarac River (3 sites) Watersheds intensively over a 2 year period in an attempt to collect 25 samples per year at each site. If conditions allow for the collection of all planned samples, 1200 stream samples will be collected over the time period. Monitoring will include field measurements, observations, and at least three photographs during each site visit.
MN Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
The purpose of this project is to improve understanding of primary productivity in the Red River and the diversity and population structure of the algal communities occurring along the river system. This will be accomplished through taxonomic identification of periphyton and phytoplankton assemblages necessary for characterizing responses to nutrient gradients along the Red River of the North.
The goal of this project is to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data for the benefit of water quality in the Red River Basin.
The goal of this project is to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data for the benefit of water quality in the Red River Basin.
High sediment levels in streams are prevalent throughout South Eastern Minnesota. Installing proven and cost-effective conservation practices that collectively reverse these impairments while also meeting flood protection and ecosystem support goals are needed. The purpose of this project is to design, construct, and maintain two retention structures and restore approximately one mile of failed stream bank. This project integrates objectives of Olmsted County, the Department of Natural Resources and City of Rochester into a common project.
The RIM-WRP program will expand past efforts and provide important benefits to the citizens of Minnesota by restoring and permanently protecting priority wetlands and associated upland native grassland wildlife habitat via perpetual conservation easements. This funding will leverage $12.6 million of federal WRP funds for the State of Minnesota and is expected to create and sustain 343 jobs and income to local landowners, businesses and others in the state based on USDA economic estimates.
Minnesota Trout Unlimited, the Minnesota Land Trust, The Nature Conservancy, and Trust for Public Land will combine their expertise in six targeted watersheds to increase the resilience of remnant populations of brook trout unique to Southeast Minnesota. We will protect and enhance habitat in floodplains, along gullies, above steep slopes, and on bluffs to slow runoff, increase infiltration, and keep aquatic habitat productive.
This program is a part of a comprehensive clean water strategy to prevent sediment and nutrients from entering our lakes, rivers, and streams; enhance fish and wildlife habitat; protect groundwater and wetlands. Specifically the Riparian Buffer Easement Program targets creating buffers on riparian lands adjacent to public waters, except wetlands. Through the Reinvest in Minnesota Program (RIM) and in partnership with Soil and Water Conservation Districts and private landowners, permanent conservation easements are purchased and buffers established.