This project will provide support for the 10th Annual Road Salt Symposium at the Minnesota Landscape Arboretum. The symposium brings together environmental organizations, companies that produce winter road de-icing salts and chemicals, scientists, policy-makers and transportation workers. They Symposium provides information on chlorides in our waters and provides innovative and new approaches to help repair our waters and sustain our resources for future generations.
This project will promulgate a nitrate water quality standard to address aquatic life toxicity, and gather information needed to support the development of total nitrogen (N) loading reduction strategies for Minnesota’s waters and also address Minnesota’s contribution to marine water hypoxia. Project will also develop a framework for a watershed nitrogen planning aid that can be used to optimize selection of Best Management Practice (BMP) systems for reducing nitrogen.
This project will provide Soil and Water Conservation Districts the opportunity to nominate an individual, business, company, municipality or organization for their concern, cooperation and/or implementation of conservation practices in a community environment. This award recognizes nominees that have excelled in a variety of categories which include: storm water management; land use conservation planning and implementation, and leadership relating to community conservation practices.
The Minnesota Pollution Control Agency (MPCA) offers grants to counties for Subsurface Sewage Treatment System (SSTS) program administration and special projects to improve SSTS compliance rates, and assistance for low-income homeowners with needed SSTS upgrades. The MPCA will determine grant allocations based on applications review; funds will flow to counties through the Board of Water and Soil Resources' Natural Resources Block Grants.
This first phase of project will define the existing watershed conditions; identify gaps in existing data; design and implement a plan to address data gaps; incorporate gap data into watershed description; guide development of the HSPF model; establish citizen advisory, technical advisory and locally-based focus groups; research and design an education and outreach strategy; and design and deploy the tools and methods to employ the strategy.
The Minnesota Pollution Control Agency (MPCA) has identified streamflow alteration as a key stressor on aquatic life, but the characteristics of streamflow alteration acting as stressors have not been identified in the MPCA Watershed Restoration and Protection Strategy (WRAPS) process. Without indices that characterize streamflow alteration, the MPCA cannot quantitatively associate metrics of aquatic life condition to streamflow alteration. The lack of quantifiable indices limits the ability of the MPCA to assess environmental streamflow needs for streams and rivers throughout Minnesota.
US Geological Survey-MN Water Science Center will complete laboratory analysis of groundwater samples for endocrine disrupting compounds (EDCs) and other emerging contaminants of interest, including organic waste water compounds, pharmaceuticals, and endrocrine active compounds, and report results. MPCA staff will complete sample collection tasks. The USGS National Water Quality Laboratory and the Kansas Water Science Center Laboratory will perform the laboratory analyses.
The contractor will add more functionality to HSPEXP+ Hydrological Simulation Program FORTRAN (HSPF) tool and conduct 2016 HSPF Modeling Contractors Meeting
The goal of this project is to enhance the current version of the Enhanced Expert System for Calibration of HSPF (HSPEXP+) so that it can more easily and quickly be used for hydrology calibration, water quality calibration, generate reports and graphs.
The lab will analyze stable isotopes oxygen-18 and deuterium in water samples collected in streams, lakes, wetlands, groundwater, and point sources. This data can identify primary flow sources under varying flow conditions (low to very high flows). Identifying sources can help identify pollutant sources or locate areas that are in need of protection. For example, you may want to protect an area that contributes cold groundwater to a coldwater fishery. Or it could link a water chemistry impairment to a specific source.
This project will complete spatial and temporal revisions of 6 Hydrologic Simulation Program FORTRAN (HSPF) models, the recalibration and validation of 7 watershed HSPF models, and the revision of the drainage network and point source representation of the Pomme de Terre HSPF model.
The goal of this project is to develop the guidance needed for water quality parameter evaluation and calibration for Hydrological Simulation Program – FORTRAN (HSPF) applications that utilize the general water quality constituent routines on the land surface to generate loadings of nutrients and organic material for input to water bodies to support dissolved oxygen (DO), nutrient, and algal simulation.
This project is to update stormwater harvest/reuse best management practices (BMPs) in the Minimal Impact Design Standards (MIDS) calculator. The update will also allow the calculator to utilize Excel files from previous of the tool.
The Minnesota Department of Health (MDH) will conduct water sample analysis and collect data for the Minnesota Pollution Control Agency (MPCA) to meet the requirements of the MPCA’s environmental programs.
This project will use the Spatially Referenced Regression On Watersheds (SPARROW) model as a means of assessing and characterizing the nitrogen loading situation in Minnesota. These results will be used along with other nitrogen loading characterization efforts conducted by others, so that a more complete characterization can be conducted. The results of this effort will be useful as Minnesota works to establish state-specific goals and strategies to address its contribution to Gulf of Mexico hypoxia.
The Minnesota Pollution Control Agency (MPCA) uses a watershed-oriented approach to assess surface water quality and define restoration and protection measures. Each of Minnesota's 81 major watersheds is assessed intensively every 10 years, based on a staggered schedule that addresses, on average, eight watersheds per year. To increase the amount of data directly available to the public online, and to make internal operations more efficient, the MPCA started a multi-year Watershed Data Integration Project (WDIP).
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project supports monitoring and assessment activities by MPCA Environmental Assistance and Outcomes staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project will evaluate best management performance and effectiveness to support meeting total maximum daily loads; develop standards and incorporate state of the art guidance using minimal impact design standards as the model; and implement a knowledge and technology transfer system across local government, industry, and regulatory sectors.
This project supports activities by MPCA technical staff that provide technical assistance , project oversight, coordination and other agency activities associated with assessing, listing and cunducting TMDL studies throughout the State of Minnesota. Project funding also includes lab analysis, equipment, and fieldwork expenses.
Staffing support to evaluate the performance of existing stormwater infiltration sites, as identified in the Minimal Impact Design Standards (MIDS) project. Monitor the range of existing infiltration devices in Minnesota and compare to design criteria, maintenance records, and quantify year-round infiltration rates. Develop and refine pretreatment options and standards for municipal stormwater treatment.
This project supports activities by Minnesota Pollution Control (MPCA) Watershed Division staff that provide technical assistance, project oversight, coordination, outreach and other agency activities associated with assessing, listing and conducting Total Maximum Daily Load (TMDL) studies throughout the State of Minnesota. Project also includes lab analysis, equipment, and fieldwork expenses associated with TMDL work at the MPCA.
This project supports monitoring and assessment activities by Minnesota Pollution Control Agency (MPCA) Environmental Outcomes staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds. Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support. Biological and Water Chemistry Stream Monitoring: Monitoring to assess the conditions of streams in each watershed.
Agencies and stakeholders are working together to clean up contaminated sediments and restore aquatic habitat to the estuary in the St. Louis River Area of Concern within the Great Lakes Basin.
Staffing support for the development of permits that provide for implementation of Total Maximum Daily Load (TMDL) requirements at wastewater facilities and stormwater permittees.
This project supports monitoring and assessment activities by Minnesota Pollution Control Agency (MPCA) Environmental Outcomes staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities. The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
Support for the subsurface sewage treatment system (SSTS) program administered by the Minnesota Pollution Control Agency (MPCA). The MPCA offers grants to counties for SSTS program administration and special projects to improve SSTS compliance rates, and assistance for low-income homeowners with needed SSTS upgrades.
The Clean Water Council was created through the Clean Water Legacy Act (Minn. Stat. Ch 114D) which was signed into law June 2, 2006. The council’s role is to advise on the administration and implementation of the Clean Water Legacy Act. See the Council’s FY18-19 Clean Water Fund and Policy Recommendations Report (December 1, 2016). The 28-member Clean Water Council (Council) represents organizations with a major role in achieving clean water, enabling consensus building and coordination on a wide array of issues critical to the people of Minnesota.
This will fund a competitive grant program for sewer projects that will help protect or restore the water quality of waters in national parks located within Minnesota.
The contractor will provide 4 day-long training sessions for the Scenario Analysis Manager (SAM) and 2 Processing Application Tool for HSPF (PATH) sessions. The SAM tool’s framework currently consists of a pre-processor (PATH) for interactively translating HSPF model application files, a Geographic Information System (GIS) for best management practice (BMP) site selection, a BMP database with pollutant removal efficiencies and associated costs, and scenario analysis, optimization, and reporting capabilities.
The contractor will collect and process the necessary files needed to develop a Processing Application Tool for HSPF (PATH) and Scenario Application Manager (SAM) project for 30 HUC 8 watersheds in Minnesota. SAM provides a graphical interface to the Hydrological Simulation Program FORTRAN (HSPF) model applications and expands the state’s investment in HSPF to a broader audience in support of the development of Total Maximum Daily Load (TMDL) studies and Watershed Restoration and Protection Strategy (WRAPS) reports.
The goal of this project is to develop forestry related best management practice (BMP) pollutant reduction/management efficiencies, costs, and management information applicable to Minnesota forests and incorporate these BMPs into the Hydrological Simulation Program FORTRAN (HSPF) model Scenario Application Manager (SAM) tool. By incorporating forestry BMPs into the existing SAM tool, forestry related management scenarios can be evaluated for potential impacts on surface waters and can inform the development of watershed restoration and protection strategies.
The goal of this work order is to collect and process the watershed specific files needed to create the Scenario Application Manager (SAM) project files to apply the SAM software in selected major watersheds in Minnesota where an Hydrological Simulation Program – FORTRAN (HSPF) model has been developed. This work order will also involve technical support for the SAM users who are applying the SAM projects.
The contractor will provide 3 Scenario Analysis Manager (SAM) training sessions in the fall of 2016 for use with Hydrological Simulation Program FORTRAN (HSPF) model applications.
This agreement is for Board of Water and Soil Resources (BWSR) to provide statewide conservation reporting system support services in order to support Minnesota Pollution Control Agency (MPCA) programs. Support services will be aimed at both MPCA staff and local government recipients of grants.
The Statewide Sediment Network was established to measure the levels of suspended sediment concentrations and particle size distributions at eight sites across Minnesota to evaluate the amount of sediment carried by rivers. USGS sample collection and laboratory analysis techniques provide a more rigorous, robust, and technically accurate measure of sediment in water than the current use of total suspended solids as the measure of sediment in water.
This project will support the MPCA’s water quality monitoring and assessment program. Specifically, the MPCA is developing a refined use designation process known as tiered aquatic life uses (TALU) to account for situations in which stream habitat has been compromised through hydrological alteration (e.g. channelization and ditching). An accurate state-wide determination of altered stream segments based upon the current National Hydrography Dataset (NHD) linework will assist in the assignment of the correct beneficial use within this new TALU framework.
The goal of this project will be to research and develop statewide winter maintenance best management practices (BMPs) for inclusion in the Statewide Chloride Management Plan and Winter Maintenance Assessment tool (WMAt). The WMAt is a necessary technical resource and planning tool for stakeholders and permittees to implement the chloride reduction strategies described in the Statewide Chloride Management Plan. This project will enhance the WMAt so that it is an effective planning tool to assist local winter maintenance professionals to reduce salt use.