This project will create and add a sediment component in the Stream Stats Program for Minnesota. This tool will be used by Minnesota Pollution Control Agency Wwtershed program staff and local partners to estimate sediment inputs in stream networks statewide.
The goal of this project is to use the Watershed Data Integration Program (WDIP) Project to apply previous experience with business analysis to the MPCA’s efforts. Develop and document implications for the strategic approach of the business to Watershed projects, their communication and implementation plans to shift to the new strategy, and the daily processes of the business that will be required to change.
The goal of this project is to provide drilling services for the Sentinel Lakes Groundwater/Surface Water Interaction Network. The three new wells will be used for monitoring the interaction between groundwater and surface water in Lakes Shaokatan and Bear Head. Groundwater/lake water interactions are not well understood, and in order to produce accurate and useful Total Maximum Daily Load watershed investigations and impairment remediations, the MPCA must understand how groundwater affects lake water quality.
The Seven Mile Creek Condition Monitoring project will maintain and build on the continuous flow and water quality data base at three stream sites and one county tile in the Seven Mile Creek watershed through the collection of approximately eighty five water samples per monitoring season in preparation for the Middle Minnesota Intensive Watershed Monitoring scheduled to begin in 2013.
This project will complete an extension of the Shell Rock River Hydrologic Simulation Program FORTRAN (HSPF) watershed model application through the year 2018. Compliance scenarios will be executed to address potential expansion of discharges from the Albert Lea Wastewater Treatment Plant (WWTP).
This project is for surface water assessment in the Shell Rock and Winnebago River Watershed including four stream sites and two lake sites. Waters of concern include Lime creek, Bancroft creek, Goose creek, a tributary to Fountain Lake, Albert Lea Lake and State Line Lake. The outcomes includes establishing baseline data for the associated sample site.
Run a set of scenarios in Hydrological Simulation Program – Fortran Scenario Application Manager (HSPF-SAM) for the Shell Rock and Winnebago River Watersheds. The scenario results will identify the most cost-effective subwatersheds and higher resolution areas based on the terrain component for the scenario best management practices (BMPs) to be implemented. The terrain analyses redistributes subbasin-wide SAM loading rates at a higher resolution for localized targeting of more critical and cost-effective source areas.
The goal of this project is to leverage the existing Hydrological Simulation Program FORTRAN (HSPF) model application that has been calibrated and validated for the Shell Rock River Watershed to assist with wastewater permitting. The contractor will deliver all modeling files and a final technical memorandum outlining the scenarios developed, how the scenarios are represented in the model, and the impact these scenarios have on water quality at specified locations for parameters of concern as described below.
The project consists of two initiatives: soil health outreach and a street sweeping study. These two initiatives will support further prioritization and targeting for nutrient reduction in the watersheds. The goal of this project is to increase implementation of soil health practices across the watersheds and adjust street sweeping schedules to reduce stormwater nutrient loading to surface waters.
RESPEC will address comments on the Shell Rock Total Maximum Daily Load (TMDL) document. The outcome of this project will be a Shell Rock River Total Maximum Daily Load (TMDL) report that is updated to reflect comments from the Minnesota Pollution Control Agency (MPCA), Environmental Protection Agency (EPA), the general public, and other stakeholders.
The proposed project area covers roughly one hundred square miles within Sibley County, but also includes a small portion of Nicollet County where Judicial Ditch 1A runs into the south branch of the Rush River. One lake and seven streams are part of the proposed project monitoring sites. Of the seven stream locations, two are part of the High Island Creek Watershed, while the remaining five are part of the Rush River Watershed. The lone lake, Lake Washington, falls within the Bevens Creek Watershed.
The result of this project will be assisting Minnesota Pollution Control Agency in administering the Smart Salting program which includes but is not limited to: preparing for and teaching classes, providing ongoing updates to training materials and resources, technical and administrative support to MPCA, and development of updates and new materials for the Smart Salting Assessment tool (SSAt).
This project will assist the Minnesota Pollution Control Agency in administering the Smart Salting program. Work will include preparing for and teaching classes, providing ongoing updates to training materials and resources, technical and administrative support, and development of updates and new materials for the Smart Salting Assessment tool (SSAt).
This contract is a component of larger project (Snake River E.coli Microbial Source Tracking Study – Cycle II) in the Snake River Watershed located in the St. Croix river basin. The study will address microbial water quality impairments in the watershed. This study will conduct fecal bacteria source tracking using genetic markers across impaired streams in the watershed during the spring and summer months of 2021.
This project will complete a Total Maximum Daily Load (TMDL) study for the impaired reaches of the Snake River Basin. The project includes development of a Generalized Watershed Loading Function (GWLF) model for nutrient sources and Total Suspended Sediment (TSS), a spreadsheet version of a BATHTUB model of lake response for four lakes, and a bacteria source assessment. Wenck will also provide all stream channel data as a spreadsheet and locational database.
The goal of this project is to extend, calibrate, and validate the existing Hydrological Simulation Program FORTRAN (HSPF) model for the Snake River Watershed in the Red River Basin. The contractor will produce an HSPF model that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) Studies. The model will generate predicted output for hydrology, sediment, nutrients, and dissolved oxygen that is consistent with observed data.
This phase of the project will complete a TMDL for the impaired reaches of the Snake River Basin. The project includes development of a Unit Area Load model for nutrient sources, a spreadsheet version of a BATHTUB lake response for four lakes, and a bacteria source assessment. Contractor will also provide all stream channel data as a spreadsheet database and in GIS.
Continue and finalize watershed models using Hydrologic Simulation Program FORTRAN (HSPF) for the Grand Marais Creek and Snake River Watersheds and complete the calibration/validation process.
The goal of this project is to utilize the information and data collected in the Phase I project to develop a Watershed Restoration and Protection Strategy (WRAPS) Report and Total Maximum Daily Load (TMDL) Study that will address water quality impairments and maintain or improve water quality throughout the Snake-Middle River Watershed. The Phase II project will allocate pollutant reductions goals, and prioritize and identify implementation strategies to maintain or improve water quality in key streams in the watershed.
This project will result in the completion of the first phase of the Watershed Restoration and Protection Strategy (WRAPS) for the Snake-Middle River Watershed.
The goal of this project is to utilize the information and data collected in the Phase 1 project to develop a Watershed Restoration and Protection Strategy (WRAPS) report and Total Maximum Daily Load (TMDL) study that will address water quality impairments and maintain or improve water quality throughout the Snake-Middle River Watershed. The Phase 2 project will allocate pollutant reductions goals and prioritize and identify implementation strategies to maintain or improve water quality in key streams in the watershed.
The goal of this project is to develop and implement a multiagency tracking framework that will help clarify connections between Clean Water Funds invested, actions taken and clean water outcomes achieved.
This project will augment data collection efforts for the Lake Superior South, Cloquet, St. Louis River, and Duluth Urban Watershed Restoration and Protection Strategy (WRAPS) projects. Activities include: attaining datasets for watershed stressors and geomorphic conditions, water quality gap monitoring, and civic engagement. The Minnesota Pollution Control Agency has been collaborating with the South St. Louis Soil and Water Conservation District (SWCD) to complete WRAPS related technical and civic engagement work in the Lake Superior basin for the past five years.
This project will collect water quality data in the Lake Superior South watershed as part of the Watershed Restoration and Protection Strategy (WRAPS) development for Minnesota waters. South St. Louis Soil and Water Conservation District (SWCD) staff will conduct all monitoring in accordance with Intensive Water Monitoring (IWM) Standard Operating Procedures (SOP). South St. Louis SWCD staff have extensive experience in stream sampling techniques, including work performed under a St.
This project will support the review of all public comments submitted for the Buffalo Creek TMDL and make appropriate edits and changes to the draft TMDL based on MPCA guidance.
Phase I built the foundation for the South Fork Crow River Watershed Restoration and Protection Strategy (WRAPS) and created a civic engagement plan. Civic engagement strategies were identified to create greater communication and watershed activities. Phase II provided the analytical and strategic foundation essential to prescribing protection and restoration strategies. These strategies focus on both protecting current fully supporting and restoring impaired surface water resources to water quality standards in the South Fork watershed.
This project will collect water quality data in the St. Louis River watershed as part of the 10-year Watershed Restoration and Protection Strategy (WRAPS) cycle for Minnesota waters. South St. Louis Soil and Water Conservation District (SSLSWCD) staff will conduct all monitoring in accordance with Minnesota Pollution Control Agency (MPCA) Intensive Watershed Monitoring (IWM) standard operating procedures. The SSLSSWCD has extensive experience in stream sampling techniques, including dissolved oxygen, pH, specific conductance, temperature, total suspended solids, nutrients, E.
This project will develop Total Maximum Daily Load (TMDL) allocations and complete a final draft TMDL report for the five lake impairments listed for the South Fork Crow River Watershed.
The goal of the project is to sustain the existing Volunteer Nitrate Monitoring Network (VNMN) domestic well network for long-term groundwater quality studies by generating ambient groundwater quality data in domestic drinking water wells completed in various southeastern Minnesota aquifers, contrasting vulnerable and non-vulnerable hydrogeologic settings.
The purpose of this effort is to create an educational video that will “bring to life” geo-scientific information related to groundwater movement in southeast Minnesota. This video will be used by the Minnesota Pollution Control Agency (MPCA), Minnesota Department of Agriculture (MDA) and other regional partners to help explain the local geology and related groundwater movement. It is anticipated that the video will be used at meetings and other events related to water resource management and natural resource issues. In addition, three stand alone high resolution graphics will be created.
The goal of this project is to investigate nitrate transport and the sources of nitrate in karst for more effective implementation of best management practices that will reduce nitrate concentrations in ground and surface water.
MPCA will administer funding to eligible Local Governmental Units to use MPCA-approved Advanced Inspectors to conduct work in accordance with Minn. Rules 7080, 7081, and 7083, which requires proper location, design, installation, use and maintenance of an individual subsurface sewage treatment system (SSTS) with a design flow of 2,500 gallons per day or more that protects the public health, safety, general welfare, and the environment by the discharge of adequately treated sewage to the groundwater. Multiple contracts will be awarded.
The final product will be a document of final action for an individual Subsurface Sewage Treatment System (SSTS) that a properly certified Advanced Inspector has reviewed to provide adequate environmental protection in accordance with Minnesota Rules.
MPCA will administer funding to eligible Local Governmental Units to use MPCA-approved Advanced Inspectors to conduct work in accordance with Minn. Rules 7080, 7081, and 7083, which requires proper location, design, installation, use and maintenance of an individual subsurface sewage treatment system (SSTS) with a design flow of 2,500 gallons per day or more that protects the public health, safety, general welfare, and the environment by the discharge of adequately treated sewage to the groundwater. Multiple contracts will be awarded.
This agreement is for Board of Water and Soil Resources (BWSR) to provide statewide conservation reporting system support services in order to support Minnesota Pollution Control Agency (MPCA) programs. Support services will be aimed at both MPCA staff and local government recipients of grants.
The goal of this project is to create a single statewide authoritative enterprise spatial data set of Hydrologic Simulation Program FORTRAN (HSPF) and Scenario Application Manager (SAM) catchment polygons which can be used and shared easily by the Minnesota Pollution Control Agency along with other state agencies and local partners.
The Statewide Sediment Network was established to measure the levels of suspended sediment concentrations and particle size distributions at eight sites across Minnesota to evaluate the amount of sediment carried by rivers. USGS sample collection and laboratory analysis techniques provide a more rigorous, robust, and technically accurate measure of sediment in water than the current use of total suspended solids as the measure of sediment in water.
This project will support the MPCA’s water quality monitoring and assessment program. Specifically, the MPCA is developing a refined use designation process known as tiered aquatic life uses (TALU) to account for situations in which stream habitat has been compromised through hydrological alteration (e.g. channelization and ditching). An accurate state-wide determination of altered stream segments based upon the current National Hydrography Dataset (NHD) linework will assist in the assignment of the correct beneficial use within this new TALU framework.
The goal of this project will be to research and develop statewide winter maintenance best management practices (BMPs) for inclusion in the Statewide Chloride Management Plan and Winter Maintenance Assessment tool (WMAt). The WMAt is a necessary technical resource and planning tool for stakeholders and permittees to implement the chloride reduction strategies described in the Statewide Chloride Management Plan. This project will enhance the WMAt so that it is an effective planning tool to assist local winter maintenance professionals to reduce salt use.
The goal of this project is to update and revise the Twin Cities Metro Area (TCMA) Chloride Management Plan to a Statewide Chloride Management Plan (CMP). The Statewide CMP will provide stakeholders the information and tools necessary to improve and/or maintain water quality with respect to chloride.