The Rapid River Watershed Restoration and Protection Strategy (WRAPS) project will result in the development of the restoration and protection strategies for the watershed and engage the local stakeholders in the practices of watershed management. This project will also develop Total Maximum Daily Loads (TMDLs) for impaired waters.
The goal of this project is to collect real-time, parameter data for specific conductance, water temperature, pH, dissolved oxygen, turbidity, and stream flow at the United States Geological Survey (USGS) gaging stations located at Fargo and Grand Forks, ND on the Red River of the North. The data will be published on the USGS National Water Information System (NWIS) website.
The goal of this project is to extend, calibrate, and validate the existing Hydrological Simulation Program – FORTRAN (HSPF) watershed models in the Red Lake River, Thief River, Clearwater River and Red Lake watersheds.
In 2017 and 2018, Redwood-Cottonwood Rivers Control Area (RCRCA) will collect water chemistry samples from the 10 lakes and 24 stream sites identified in the Redwood and Cottonwood River watersheds. Six samples will be collected at 10 lakes from May through September in 2017; five samples will be collected at 5 lakes in 2018 from May through September. Eleven samples will be collected at each of the 24 stream sites following the Basic Regime in 2017. Sixteen samples at each stream site will be collected in 2017 and 2018 following the E.coli monitoring regime.
The goal of this project is to complete the construction, calibration, and validation of an Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Minnesota portions of three watersheds: Root River, Upper Iowa, and Mississippi River-Reno.
This is the second phase of the Roseau River Watershed Restoration and Protection Strategy (WRAPS) project, which includes: developing the Total Maximum Daily Load (TMDL) study, pollutant load allocations, watershed restoration and protection strategies, and conducting civic engagement.
The contractor will provide 4 day-long training sessions for the Scenario Analysis Manager (SAM) and 2 Processing Application Tool for HSPF (PATH) sessions. The SAM tool’s framework currently consists of a pre-processor (PATH) for interactively translating HSPF model application files, a Geographic Information System (GIS) for best management practice (BMP) site selection, a BMP database with pollutant removal efficiencies and associated costs, and scenario analysis, optimization, and reporting capabilities.
The contractor will collect and process the necessary files needed to develop a Processing Application Tool for HSPF (PATH) and Scenario Application Manager (SAM) project for 30 HUC 8 watersheds in Minnesota. SAM provides a graphical interface to the Hydrological Simulation Program FORTRAN (HSPF) model applications and expands the state’s investment in HSPF to a broader audience in support of the development of Total Maximum Daily Load (TMDL) studies and Watershed Restoration and Protection Strategy (WRAPS) reports.
The goal of this project is to develop forestry related best management practice (BMP) pollutant reduction/management efficiencies, costs, and management information applicable to Minnesota forests and incorporate these BMPs into the Hydrological Simulation Program FORTRAN (HSPF) model Scenario Application Manager (SAM) tool. By incorporating forestry BMPs into the existing SAM tool, forestry related management scenarios can be evaluated for potential impacts on surface waters and can inform the development of watershed restoration and protection strategies.
The goal of this work order is to collect and process the watershed specific files needed to create the Scenario Application Manager (SAM) project files to apply the SAM software in selected major watersheds in Minnesota where an Hydrological Simulation Program – FORTRAN (HSPF) model has been developed. This work order will also involve technical support for the SAM users who are applying the SAM projects.
The contractor will provide 3 Scenario Analysis Manager (SAM) training sessions in the fall of 2016 for use with Hydrological Simulation Program FORTRAN (HSPF) model applications.
The goal of this project is to extend, calibrate, and validate the existing Hydrological Simulation Program FORTRAN (HSPF) model for the Snake River Watershed in the Red River Basin. The contractor will produce an HSPF model that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) Studies. The model will generate predicted output for hydrology, sediment, nutrients, and dissolved oxygen that is consistent with observed data.
The goal of this project is to utilize the information and data collected in the Phase I project to develop a Watershed Restoration and Protection Strategy (WRAPS) Report and Total Maximum Daily Load (TMDL) Study that will address water quality impairments and maintain or improve water quality throughout the Snake-Middle River Watershed. The Phase II project will allocate pollutant reductions goals, and prioritize and identify implementation strategies to maintain or improve water quality in key streams in the watershed.
The goal of this project is to utilize the information and data collected in the Phase 1 project to develop a Watershed Restoration and Protection Strategy (WRAPS) report and Total Maximum Daily Load (TMDL) study that will address water quality impairments and maintain or improve water quality throughout the Snake-Middle River Watershed. The Phase 2 project will allocate pollutant reductions goals and prioritize and identify implementation strategies to maintain or improve water quality in key streams in the watershed.
This project will augment data collection efforts for the Lake Superior South, Cloquet, St. Louis River, and Duluth Urban Watershed Restoration and Protection Strategy (WRAPS) projects. Activities include: attaining datasets for watershed stressors and geomorphic conditions, water quality gap monitoring, and civic engagement. The Minnesota Pollution Control Agency has been collaborating with the South St. Louis Soil and Water Conservation District (SWCD) to complete WRAPS related technical and civic engagement work in the Lake Superior basin for the past five years.
This agreement is for Board of Water and Soil Resources (BWSR) to provide statewide conservation reporting system support services in order to support Minnesota Pollution Control Agency (MPCA) programs. Support services will be aimed at both MPCA staff and local government recipients of grants.
The Statewide Sediment Network was established to measure the levels of suspended sediment concentrations and particle size distributions at eight sites across Minnesota to evaluate the amount of sediment carried by rivers. USGS sample collection and laboratory analysis techniques provide a more rigorous, robust, and technically accurate measure of sediment in water than the current use of total suspended solids as the measure of sediment in water.
The goal of this project will be to research and develop statewide winter maintenance best management practices (BMPs) for inclusion in the Statewide Chloride Management Plan and Winter Maintenance Assessment tool (WMAt). The WMAt is a necessary technical resource and planning tool for stakeholders and permittees to implement the chloride reduction strategies described in the Statewide Chloride Management Plan. This project will enhance the WMAt so that it is an effective planning tool to assist local winter maintenance professionals to reduce salt use.
The goal of this project is to update and revise the Twin Cities Metro Area (TCMA) Chloride Management Plan to a Statewide Chloride Management Plan (CMP). The Statewide CMP will provide stakeholders the information and tools necessary to improve and/or maintain water quality with respect to chloride.
The goal of this project is to calculate an additional bacteria total maximum daily load and incorporating that information in the Total Maximum Daily Load Report (TMDL) and the Watershed Restoration and Protection Strategy (WRAPS) report. Other services that will be provided during this project are technical assistance, assistance with responses to comments received during the public notice process, incorporating public comments into the documents and preparing the documents for final federal and state approval.
The goal of this project is to gather and collect necessary watershed data for the development of a Watershed Restoration and Protection Strategy (WRAPS) for the Upper/Lower Red Lakes Watershed that includes impairments, their causes, and plans for restoration. Implementation of the WRAPS will maintain or improve water quality for the watershed.
The primary goal of this project is to examine the calibration and validation of recently extended Hydrological Simulation Program – FORTRAN (HSPF) watershed models for the Mississippi River-Headwaters, Mississippi River-Grand Rapids, Mississippi River-Brainerd, Mississippi River-Sartell, Mississippi River-St. Cloud, Leech Lake, Pine River, Crow Wing River, Long Prairie River, and Redeye River watersheds and revise the calibration.
This goal of this project is the completion of a Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Upper Red River watershed in the Red River Basin. This includes the construction, calibration, and validation of the model for hydrology and water quality parameters.
The goal of this project is to develop guidance for water quality parameter evaluation and calibration for Hydrological Simulation Program FORTRAN (HSPF) applications focused on dissolved oxygen (D.O.), nutrient, and algal simulation, along with a demonstration of the guidance by step-by-step application to D.O.-impaired Minnesota watersheds.
This is a joint project between the United States Geological Survey (USGS), Minnesota Pollution Control Agency (MPCA), North Dakota, and Manitoba. The project is a basin-wide, up-to-date water quality trend analysis using the "QWTrend" program for approximately 40 bi-national river sites to review nutrients, total suspended solids, total dissolved solids, sulfate and chloride from 1980 - 2015.
Vermilion Community College will assist the Minnesota Pollution Control Agency (MPCA) with meeting the Watershed Restoration and Protection Strategies (WRAPS) development objectives of collecting data and completing watershed assessments for the Rainy River Headwaters, Vermilion River, and Little Fork River watersheds. Services will include providing support for field water monitoring, other field sampling and measurements and related field data management, analysis, and assessments in these watersheds.
This project will continue the development of a Pre-Watershed Restoration and Protection Strategy (WRAPS) assessment, evaluation, community outreach and involvement, and development project that will provide for a comprehensive and more successful watershed restoration approach.
The goal of this project is to maintain and make enhancements to the Winter Maintenance Assessment tool (WMAt), which is a necessary technical resource and planning tool for stakeholders and permittees to implement the chloride reduction strategies described in the Chloride Management Plan. The WMAt is critical for assisting stakeholders in meeting the water quality goals of the Chloride Management Plan without compromising public safety, and allowing for consideration of the varying resources and conditions for each individual winter maintenance program.
Trained staff will help assure the water chemistry data that is collected is of good quality. After the 1 day training events participants will be able to calibrate sonde water quality monitoring sensors in a lab or field setting, deploy the calibrated sonde to collect water chemistry, store sondes properly during non-field season and perform preventative maintenance or simple troubleshooting actions with the help of tech support. This will be satisfied by two different training events held in 2017.
The goal of this project is to test the sensitivity of the Zumbro River Watershed Hydrological Simulation Program FORTRAN (HSPF) model management scenario results. Additional goals are to develop Total Maximum Daily Loads (TMDLs) for impaired stream reaches and Rice Lake, which will be documented in a TMDL Report. The consultant will apply the existing calibrated and validated Zumbro River Watershed HSPF model to construct load duration curves to develop TMDLs.