The goal of this project is to perform water quality monitoring and load calculation duties to accomplish MPCA's Watershed Pollutant Load Monitoring Network monitoring efforts at seven sites for the Redwood and Cottonwood River watersheds as well as the Minnesota River site near Morton.
Lower Prior Lake was the target of a 2011-2013 diagnostic and feasibility study that identified projects and ranked subwatershed by phosphorus loading to the lake. This project is in a high loading subwatershed and includes three elements designed to reduce phosphorus loading and control rates and volumes of stormwater runoff: 1) retrofitting an existing ditch section with in-line iron-sand filters; 2) expanding storage capacity and creating wetland upstream of the ditch; and 3) installing a new control structure in an existing berm.
Arctic Lake, while not listed as an impaired water on the statewide 303(d) list, both regularly exceeds the statewide phosphorus standard for shallow lakes and drains directly to Upper Prior Lake, which is impaired for nutrients Reducing Phosphorus to Arctic Lake will help reverse the current declining water quality while also reducing the loading entering Upper Prior Lake.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
This project will accelerate production of County Geologic Atlases (part A). An atlas is a set of geologic maps and associated databases for a county that facilitate informed management of natural resources, especially water and minerals.
This project will complete the installation of four nested wells to the Ambient Groundwater Monitoring Network and relocated one well in the City of Saint Paul. Braun Intertec will coordinate site access and oversee the well installation by a state drilling contractor.
South Central Technical Service Area (SCTSA) will use this Clean Water Fund grant to provide Soil and Water Conservation Districts and other local organizations in its eleven-county area with a Geographic Information System (GIS) Technician to assist in using available GIS information to target specific locations where Best Management Practices (BMPs) can be installed to help improve water quality.
Bartlett Lake in Koochiching County is impaired for eutrophication and has already undergone a paleolimnological study. This project will utilize the data and results of paleolimnological study to develop in-lake management strategies that, if implemented, could significantly improve the water quality of Bartlett Lake.
The Blue Earth SWCD will be monitoring 7 stream sites located in the Le Sueur River Watershed. The stream sites will be monitored at the road crossing locations via bridge, culvert or shore. Onsite conditions will be recorded, water sample readings will be taken for Secchi tube, specific conductance, temperature, pH, DO, and photos taken.
With limited funds and limited staff time available for targeting critical service areas and implementing Best Management Practices (BMPs), Geographic Information System (GIS)-based tools that pinpoint locations where BMPs will have the highest effectiveness are increasingly important. The Blue Earth County/SWCD Watershed Implementation Targeting project will utilize LiDAR topographic data to determine areas of high importance for BMP implementation. The county is located in the Blue Earth, LeSueur, Watonwan and Middle Minnesota watersheds where there is a high density of impaired waters.
This project will install new stormwater treatment practices in neighborhoods directly draining to Coon Lake. The objective is to remove phosphorus, which fuels algae growth, before the water is discharged into the lake. Seventeen potential project sites have been identified and ranked and include curb-cut rain gardens, swales, stabilizing stormwater discharge points, and a basin outlet modification.
The Minnesota DNR and the Minnesota Forest Resources Council work with forest landowners, managers and loggers to implement a set of voluntary sustainable forest management guidelines that include water quality best management practices (BMPs) to ensure sustainable habitat, clean water, and productive forest soils, all contributing to healthy watersheds. This project will monitor the implementation of these forest management guidelines and BMPs on forested watersheds in MN.
This project will install an iron enhanced sand filter (IESF) to restore water quality in Golden Lake. Golden Lake is within a fully developed area of the Twin Cities, surrounded by residential land use, and the focal point of a city park. The IESF will achieve 11% of the phosphorus reduction (21 lbs/yr) required for Golden Lake to meet State water quality standards, as identified in the approved Total Maximum Daily Load (TMDL).
Minnesota’s use of groundwater has increased over the last two decades. An increasing reliance on groundwater may not be a sustainable path for continued economic growth and development. The DNR is establishing three pilot groundwater management areas (GWMA) to help improve groundwater appropriation decisions and help groundwater users better understand and plan for future groundwater needs associated with economic development.
The project will involve monitoring twelve stream sites and one lake in Jackson County. The stream sites are known to be impaired. The purpose of monitoring in multiple locations is to determine the source of the impairments.
The goal of this project is to complete the calibration/validation process of Hydrologic Simulation FORTRAN (HSPF) watershed models for the Lake of the Woods/Rainy River Basin.
The goal of this project is to construct, calibrate, and validate a watershed model using HSPF. RESPEC will produce a HSPF model that can readily be used to provide information to support conventional parameter TMDLs.
The goal of this project is to extend the existing HSPF models through 2012 in the Chippewa Watershed (07020005) and Hawk-Yellow Medicine Watershed (07020004) to incorporate recent monitoring data to support current MPCA business needs and sediment source investigations.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.
Itasca SWCD will work with the Minnesota Pollution Control Agency as a collaborative effort to monitor the Big Fork River near Bigfork at State Highway 6 and Big Fork River near Craigsville at State Highway 6. Itasca Soil and Water Conservation District (SWCD) staff will strive to capture the peak, rising, and falling limbs of the hydrograph for spring run-off and significant storm events as well as base flow samples. Itasca SWCD staff will utilize local rain gauge readers, storm tracking weather services, and historical stage data to aid in making monitoring judgments.
The Koochiching County SWCD staff will collect water chemistry and field parameters at specific times to determine amount of contaminant load into each stream. These sites will coincide with locations where stream flow data is also being collected. This project will focus on watershed load monitoring in both the Big Fork and Little Fork River watersheds.
The consultant LimnoTech will support response to Total Maximum Daily Load (TMDL) comments the peer review process, United States Environmental Protection Agency and public notice. They will then revise the TMDL document as needed and attend internal and external project meetings.
The Minnesota Pollution Control Agency (MPCA) is a co-sponsor and assists with a portion of the financial support for the International Rainy River-Lake of the Woods Watershed Forum.
The Little Fork River Watershed Assessment will include the waters of the Rice River, Little Fork River, Flint Creek, Nett Lake River, Beaver Brook, Valley River, Willow River, Sturgeon River, Bear River, Dark River, and the Lost River. This Assessment will also include Little Bear Lake, Bear Lake, Thistledew Lake, Little Moose Lake, Raddison Lake, Napoleon Lake, Owen Lake, Dark Lake, Clear Lake, Long (Main) Lake, Dewey Lake, and Long (North) Lake. These lakes and streams are found throughout the Little Fork River Watershed, which spans parts of Koochiching, St. Louis and Itasca Counties.
This project will reduce sediment and nutrient loading to the main stem and local tributaries of the Lower Minnesota River (LMR) by providing cost share for practices that treat ravine headcut and channel erosion, streambank/shoreline erosion, ephemeral gully erosion, and direct-discharging open inlet drainage systems. Targeted Best Management Practices (BMPs) will include but not be limited to grade control structures, grassed/lined waterways, water & sediment control basins, shoreline/streambank stabilization and alternative tile inlets.
This project will establish a groundwater monitoring network in the 11 county metropolitan area. The network will provide information about aquifer characteristics and natural water trends by monitoring healthy aquifers (non-stressed systems). The project will also develop an automated system that captures groundwater level and water use data. This system will enhance evaluation of changes in aquifers that are stressed by pumping from existing wells.
Ensuring natural resource practitioners are applying state-of-the-art approaches is the best way to achieve optimum Best Management Practice (BMP) selection, design, and placement in the landscape, thereby maximizing Clean Water Fund (CWF) benefits. To that end, it is critical to train new staff, create modeling protocols for new BMPs, refine and calibrate models, and test ever-advancing modeling applications.
The primary goal of this project is to develop a Minnesota Pollution Control Agency (MPCA) lead comprehensive Watershed Restoration and Protection Strategies (WRAPS) report to be used on the local level. Achieving this goal will require sound working relationships between local units of government, citizens, and state government. The Lakes Engagement Team will gather input from these groups and contribute towards the creation of a Watershed Restoration and Protection Strategy (WRAPS) report that can be utilized by local decision-makers.
The goal of this project is to design and install two watershed interpretive signs: one to be placed at Minneopa State Park and one at Fort Ridgely State Park to inform the public about watershed, water quality issues, and how someone can improve water quality.
This project addresses twelve lakes that have aquatic recreation impairments as identified by eutrophication indicators and 53 impairments on 45 stream reaches in the Minnesota River Mankato and Watonwan River watersheds. The project will develop Total Maximum Daily Loads (TMDLs) addressing impaired lakes and streams in the Minnesota River–Mankato and Watonwan River watersheds. A TMDL establishes the maximum amount of a pollutant allowed in a waterbody and serves as the starting point or planning tool for restoring water quality.
This project will create a high accuracy elevation dataset - critical for effectively planning and implementing water quality projects - for the state of Minnesota using LiDAR (Light Detection and Ranging) and geospatial mapping technologies. Although some areas of the state have been mapped previously, many counties remain unmapped or have insufficient or inadequate data. This multi-year project, to be completed in 2012, is a collaborative effort of Minnesota's Digital Elevation Committee and partners with county surveyors to ensure accuracy with ground-truthing.