The goal of the project is the development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL.
MSU-Mankato Water Resources Center in the Mankato area will provide conventional pollutant monitoring at the following sites: Beauford Ditch, Big Cobb River, Blue Earth River, Le Sueur River (3), Little Cobb River, Minnesota River (2), Watonwan River.
This project will support the monitoring of two sites on the Cannon River throughout the field seasons of 2013 and 2014 during storm events and baseflow conditions to capture 25 samples per year at each site according to the WPLMN objectives. The information gathered from these samples and site visits will be compiled for reporting purposes and for use in calculating pollutant loading using the FLUX32 model.
This project will monitor six sites within the Minnesota River Basin: Hawk Creek near Maynard, Hawk Creek near Granite Falls, Beaver Creek near Beaver Falls, Yellow Medicine River near Granite Falls, Yellow Medicine River near Hanley Falls, and Spring Creek near Hanley Falls. The sites will be monitored according to MPCA’s Major Watershed Load Monitoring (WPLMN) Standard Operating Procedure, which is the procedure being followed for sites currently monitored by the Hawk Creek Watershed Project (HCWP).
The goal of this project is to perform water quality monitoring and load calculation duties to accomplish MPCA's Watershed Pollutant Load Monitoring Network monitoring efforts at seven sites for the Redwood and Cottonwood River watersheds as well as the Minnesota River site near Morton.
The Red River is impaired for sediment. This project will install best management practices to repair severe gullies that are contributing massive sediment loads to the Red River. The City of Moorhead also draws water from the Red River for its drinking water supply downstream. The proposed practices will reduce water treatment costs upon installation. Grant funds will be used to install four grade stabilization structures. These structures will control concentrated runoff and reduce flow velocities.
To provide professional development for two staff members at the national American Association for State and Local History Conference in St. Paul, September 17-20, 2014.
These funds are being used to systematically collect data and produce statistically valid estimates of the rate of soil erosion and tracking the adoption of high residue cropping systems in in the 67 counties with greater than 30% land in agricultural row crop production. Designed to establish a long term program in Minnesota to collect data and produce county, watershed, and state wide estimates of soil erosion caused by water and wind along with tracking adoption of conservation measures to address erosion.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
These funds are being used to systematically collect data and produce statistically valid estimates of the rate of soil erosion and tracking the adoption of high residue cropping systems in counties with greater than 30% land in agricultural row crop production. Designed to establish a long term program in Minnesota to collect data and produce county, watershed, and state wide estimates of soil erosion caused by water and wind along with tracking adoption of conservation measures to address erosion.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
The purpose of the Watershed Based Funding is to address priority concern 1, mitigate altered hydrology and minimize flooding and priority concern 2, minimize the transport of sediment, excess nutrients, and bacteria. The goal for the 2018/2019 is to reduce 300 tons of sediment per year, increase storage by 100 acre-feet per year, reduce nitrogen by 16,000 pounds per year and to reduce phosphorus by 800 pounds per year. Grant funds will also be used for technical staffing in order to have the capabilities of implementing the priority BMPs in the seven priority sub-watersheds.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
The goal of our project is to protect & restore the Moorhead & Breckenridge, MN Public water supply. This will be achieved by protecting the Buffalo & Wahpeton Buried Aquifer's and to protect & restore the surface water's that enter the Red River of the North. According to the 2019 MPCA Report of the Red River of the North, the tributaries in the Red River Basin are delivering too much sediment and nutrients to the Red River.