The Pomme de Terre River Association has targeted and identified specific areas and activities required for marked water quality improvement. This project will implement of 16 Water and Sediment Control Basins (WASCOBs), 28 Rain Gardens, 2 Shoreline/ Stream bank stabilization, 10 Waste Pit Closures, 1 Terrace Project, and the enrollment of 1900 acres into conservation practices. These practices in total will directly result in site-specific and watershed-dependent reductions of 17,801 tons of sediment and 17,784 pounds of phosphorous from entering surface waters yearly in the watershed.
The Rock County Soil and Water Conservation District/Land Management will build upon terrain analysis products developed by a Rock River Watershed 2013 BWSR grant and extend the data products to include additional water quality, Best Management Practices (BMP) suitability, BMP effectiveness, and BMP value datasets. This project will also extend this analysis to the remainder of Rock County, specifically Mud Creek, Beaver Creek and Split Rock Creek which are all listed for turbidity impairments.
A direct appropriation of $400,000 in FY 2010 for the Anoka Conservation District (ACD) is for the metropolitan landscape restoration program for water quality and improvement projects in the seven-county metro area (the law also provides $600,000 for this purpose in FY2011).
This monitoring project includes lake and stream monitoring and encompasses all of Cass County, and surrounding counties. The project will obtain water quality data for streams; in 2009, lakeshed assessments indicated that many surface waters throughout the county were data deficient. This project will address the need for sufficient data on a county-wide basis and fulfill the State’s intensive watershed monitoring program goals by obtaining water quality data at targeted lake and stream sites.
The goal of the Chippewa River Watershed Protection project is to protect unimpaired areas of the watershed. This will be accomplished through education and outreach with landowners and through implementation of best management practices.
This project will enable community partners to implement 5-10 shoreline erosion reduction best management projects that will reduce sediment and improve water quality of county lakes and streams. Preference will be given to properties within a watershed of a Total Maximum Daily Load study, properties on a sentinel lake, properties on lakes and streams with active associations, and projects ranking high in sediment reduction amount. Projects may include engineered erosion reduction Best Management Practices and/or plantings.
The goal of this project is to develop and complete the Watershed Restoration and Protection (WRAP) process and report, while also enlarging and sustaining a public participation process that encourages local ownership of water quality problems and solutions (civic engagement).
Civic engagement strategies including education public participation in watershed work and expanded knowledge, technical input into and review of stressor id process and report, Total Maximum Daily Load (TMDL) reports, implementation plans and protecion strategies.
This project will collect a complete Trophic Site Index (TSI) data set for Crow Wing County lakes and a complete data set for streams and rivers for the Intensive Monitoring Program (IMP). Crow Wing County, Cass County, Wadena County, Morrison County and Hubbard County are partnering to ensure that all target lakes and rivers within the Crow Wing River watershed are monitored efficiently.
The Minnesota DNR and the Minnesota Forest Resources Council work with forest landowners, managers and loggers to implement a set of voluntary sustainable forest management guidelines that include water quality best management practices (BMPs) to ensure sustainable habitat, clean water, and productive forest soils, all contributing to healthy watersheds. This project will monitor the implementation of these forest management guidelines and BMPs on forested watersheds in MN.
Monitoring the health of Minnesota rivers is vital in determining, maintaining, and improving the health of the rivers for the environment and public use. The scope of this project is to collect surface water chemistry samples at designated sampling locations during appropriate time periods and at appropriate frequencies during these time periods for 1 year beginning in February 2015. The data collected and submitted to MPCA will provide information necessary to determine stream characteristics and calculate water quality pollutant loads.
Minnesota’s use of groundwater has increased over the last two decades. An increasing reliance on groundwater may not be a sustainable path for continued economic growth and development. The DNR is establishing three pilot groundwater management areas (GWMA) to help improve groundwater appropriation decisions and help groundwater users better understand and plan for future groundwater needs associated with economic development.
The goal of this project is to continue and finalize Hydrological Simulation Program FORTRAN (HSPF) watershed model construction and complete the calibration/validation process. The consultants will produce HSPF watershed model applications for the Lake Superior North and Lake Superior South watersheds that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) projects.
The goal of this project is to construct, calibrate, and validate two Hydrologic Simulation Program FORTRAN (HSPF) watershed models: Lake Superior North and Lake Superior -South. The contractor will produce HSPF models that can readily be used to provide information to support conventional parameter Total Maximum Daily Loads (TMDLs). The contractor will clearly demonstrate that these models generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models simulate sediment erosion and transport, however these models periodically need to be adjusted to be consistent with the most recent sources of information regarding sediment distribution and loading rates. The goal of this project is to refine the sediment source partitioning and simulation in the Minnesota River basin using all relevant available sources of information.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.
The Lake Superior Beach Monitoring and Notification Program exists to test recreational beach water and notify the public if bacteria levels become unsafe. This project will expand the Beach Program to include additional outreach efforts, sanitary surveys and testing of new technologies to improve the Beach Program. Monitoring results will be used to inform the public, find the sources of bacterial contamination and address polluted runoff from improper waste disposal.
Improved levels of civic engagement and community participation in support for the Watershed Restoration and Protection Strategy (WRAPS) processes in the St. Louis River, Lake Superior South, and Cloquet River Watersheds. Monitoring plans and compiled field data will be provided and summarized that will aid in the future completion of Total Maximum Daily Load Reports (TMDLs) in these watersheds and in the Lake Superior North Watershed.
Phase 4 of the Lake Winona Total Maximum Daily Load (TMDL) project will finalize the draft Lake Winona TMDL, dated November 2009, by completing additional data analysis, lake quality modeling, updating the TMDL report, and supporting the public involvement process.
The Minnesota Pollution Control Agency (MPCA) is a co-sponsor and assists with a portion of the financial support for the International Rainy River-Lake of the Woods Watershed Forum.
This project will dentify critical pathways and areas on the landscape that contribute a disproportionate amount of sediment stressors to selected streams located in LS South and/or LS North HUC 8 watersheds. Unlike other HUC 8 watersheds with one mainstem stream and nested tributaries to the mainstem, LS South and North consist of numerous individual streams flowing to Lake Superior. Each of these streams has a mainstem, tributaries flowing to the mainstem and a surrounding watershed.
The main outcome of Phase III of the project will be the final deliverable of a WRAPS report that will prescribe the restoration and protection strategies for the surface water resources within the Leech Lake River Watershed. The WRAPS will provide the analytical and strategic foundation which will be essential in protecting the surface water resources within this high quality watershed. Along with the development of the WRAPS report, this project will support the development and completion of the MPCA Stressor ID and Watershed Assessment reports to be completed for this watershed.
This project builds on the momentum of previous Clean Water Fund grants in making significant and quantifiable sediment, nutrient and runoff volume reductions to address the turbidity, dissolved oxygen and other impairments of the Lower Minnesota River (LMR). These water quality improvements will be achieved by constructing on-the-ground conservation best management practices (BMPs) in the targeted watersheds -including specifically Sand and Roberts Creek - and near channel sources.
This project will establish a groundwater monitoring network in the 11 county metropolitan area. The network will provide information about aquifer characteristics and natural water trends by monitoring healthy aquifers (non-stressed systems). The project will also develop an automated system that captures groundwater level and water use data. This system will enhance evaluation of changes in aquifers that are stressed by pumping from existing wells.
This project will provide condition monitoring and problem investigation monitoring at the following sites. Mississippi River: Tributaries include Bassett Creek, Cannon River, Crow River, and Minnehaha Creek. Minnesota River: Tributaries include Eagle Creek, Riley Creek, and Willow Creek. St. Croix River: Tributary includes Valley Creek.
This project will create a high accuracy elevation dataset - critical for effectively planning and implementing water quality projects - for the state of Minnesota using LiDAR (Light Detection and Ranging) and geospatial mapping technologies. Although some areas of the state have been mapped previously, many counties remain unmapped or have insufficient or inadequate data. This multi-year project, to be completed in 2012, is a collaborative effort of Minnesota's Digital Elevation Committee and partners with county surveyors to ensure accuracy with ground-truthing.
Several important milestones will be completed during this Phase (Phase II) of the Mississippi River (Headwaters) Watershed Restoration and Protection Strategy (WRAPS) project. These milestones will include the completion of the Stressor ID & Watershed Monitoring and Assessment Reports, the completion of the Zonation Modeling watershed priority planning process (through the continuation of the Civic Engagement project component), and the development of the overall WRAPS report.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds. Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support. Biological and Water Chemistry Stream Monitoring: Monitoring to assess the conditions of streams in each watershed.
The goal of this project is to analyze and document database architecture, platform, table structures, systems and data fields at six Minnesota agencies (Board of Soil and Water Resources, Department of Natural Resources, MN Department of Agriculture, MN Department of Health, Metropolitan Council, and MN Pollution Control Agency) for 30+ databases related to water.
This project will reduce runoff by establishing at least 75 acres of native grass on private lands in priority subwatersheds of the Sand Creek Watershed by offering incentives and establishment of cost assistance to landowners to convert row crops to native vegetation above resources available from existing programs used to establish vegetation.
The study will assess existing phosphorus data records and create a model to explain phosphorus loading into the Red River of the North. Studies have found that the majority of nutrient loading in the stream located in agricultural areas occurs with sediment loading since nutrients are typically bound to sediment particles.
This project is a cooperative initiative between the Prior Lake Spring Lake Watershed District, the City of Prior Lake, and the Scott Soil and Water Conservation District to implement on-the-ground Best Management Practices (BMPs) that will protect and improve water quality in Spring, Upper Prior and Lower Prior Lakes, water resources of local, regional, and state significance. Spring and Upper Prior Lakes are both impaired and have a completed Total Maximum Daily Load and Implementation Plan.
Regional public projects that are the focus of the proposed project include: Infiltration areas and a sedimentation pond enhancement in subwatersheds N3/N4; Parking lot storm drain rain gardens and a sedimentation pond enlargement in subwatersheds N5/N6; An infiltration area and a sedimentation pond enhancement in subwatersheds S9/S11; Ditch checks along Highway 13 in subwatershed 10.
This project will develop an effective transferable model to engage and educate watershed residents, stakeholders and others to better understand and protect watershed ecostystems through environmental monitoring, training, and formal and informal education programs in their local watershed. The project will build on the foundation of the existing Red River Basin River Watch program by strengthening three main activity areas: 1) curriculum integration and teacher training, 2) youth leadership and civic engagement, and 3) applied research collaboration and watershed science skills building.
The goal of this project is to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data for the benefit of water quality in the Red River Basin.