The MPCA has identified 13 stream sites in the watershed to characterize watershed water quality. This project will supplement and complement the identification of the top 50 sites in the watershed that are contributing to water impairment and also help in identification of priority watersheds in the re-write of the watershed comprehensive plan. Water samples and field measurements will be collected at each monitoring location ranging from baseline events to high flow events.
This project will obtain spatial and long-term pollutant load information from the Root River watershed in Southeast Minnesota. To accomplish this, the Fillmore Soil and Water Conservation District (SWCD) will assist the MPCA with water quality monitoring and annual pollutant loading calculations. Approximately 25 grab samples will be collected/site/year at 5 sites within the Root River watershed (totaling 125 grab samples/year). Annual load calculations for each site will be determined using the FLUX32 model.
The Zumbro River Watershed Pollutant Load Monitoring Network (WPLMN) project will continue existing efforts to calculate seasonal pollutant loads for the Root River. The Zumbro Watershed Partnership (ZWP) along with Olmsted County Environmental Services will assist the Minnesota Pollution Control Agency (MPCA) with water quality monitoring and pollutant load calculations of four sub-watershed sites. Approximately 50 grab samples per site (total of 200) between ice-out and October 31 of 2016 and 2017 will be collected along with field measurements and observations.
This project will be a complete TMDL report for the Biota and Bacteria (E. coli) impairments for the Ann River Watershed. The water bodies associated with these impairments will then be removed from the MPCA’s impaired waters list, and implementation activities to restore the water bodies will begin.
This project will use the We Are Water MN traveling exhibit and the Minnesota Humanities Center's approach to community engagement, relationship building, and storytelling, to increase community capacity for sustainable watershed management in six Minnesota watersheds.
The goal of this project is to use the We Are Water MN exhibit and their technical knowledge in relationship-building and storytelling to increase community capacity for sustainable watershed management in the Cannon River, Cedar River, Mississippi-Headwaters, Mississippi-Grand Rapids, Mississippi-Twin Cities, Red Lake River, Rum River and St. Louis River watersheds.
This project will use the We Are Water MN traveling exhibit and the Minnesota Humanities Center's approach to community engagement, relationship building, and storytelling, to increase community capacity for sustainable watershed management in five Minnesota watersheds. The following communities were selected as host sites for this project:
Winona (City of Winona), active hosting period: March 3-April 25, 2022
Lake City (Lake Pepin Legacy Alliance), active hosting period: April 28-June 20, 2022
This project will provide condition monitoring and problem investigation monitoring at the following sites.
Mississippi River: Tributaries include Bassett Creek, Cannon River, Crow River, and Minnehaha Creek.
Minnesota River: Tributaries include Eagle Creek,Riley Creek, and Valley Creek tributary to the St. Croix River
This project will complete a Total Maximum Daily Load Implementation Plan for the watersheds of Big Sandy and Minnewawa Lakes. This restoration plan will provide pollution reduction and watershed management strategies that are developed with input from stakeholders in the watersheds.
Complete section 3 of Watershed Restoration and Protection Strategy (WRAPS) document for the Cannon and Zumbro Watersheds and provide input to sections 1 and 2.
In order to track progress of restoring and protecting water quality in the Nemadji watershed, surface water monitoring is needed.
The watershed has several impaired reaches including the Nemadji River, South Fork Nemadji River and Skunk Creek.
Impairments include total suspended sediment (TSS), total phosphorus (TP), and E.coli. Several best management practices (BMPs) were conducted in the last 10 years to improve these resources.
The goal of this project is to develop and complete the Watershed Restoration and Protection (WRAP) process and report, while also enlarging and sustaining a public participation process that encourages local ownership of water quality problems and solutions (civic engagement).
The data collected in this workplan is the foundation for an accurate TMDL allocation and accurate implementation strategy design. Current and historic phosphorus inputs will be calculated and evaluated as to source. Nutrient and algal history and trends in sedimentation will be reconstructed to identify ecological changes that have occurred in the lakes both recently and historically.
Carlton County Soil and Water Conservation District (SWCD), Carlton County Planning and Zoning, and local volunteers will lead an effort to collect Total Phosphorus, Chlorophyll-A, and secchi disc transparency data for the MPCA Surface Water Assessment Grant (SWAG) project on following six lakes: Eagle Lake, Upper (North) Island Lake, Lower (South) Island Lake, Tamarack Lake, Cole Lake, and Cross Lake.
Carlton County Soil and Water Conservation District (SWCD) and local volunteers will lead an effort to collect total phosphorus, chlorophyll-A, hardness, chloride and secchi disc transparency data for the Minnesota Pollution Control Agency (MPCA) Surface Water Assessment Grant project on the following 10 lakes: Twentynine, Bob, Bear, Little Hanging Horn, Hanging Horn, Moose, Echo, Coffee, Kettle and Merwin.
This project builds on past successful civic engagement efforts and will focus in on critical problem areas, to both identify the contributing areas of pollutant and also outreach to identify the most likely landowner contacts and engagements for continued success in the watershed. Field monitoring will refine what is currently known about pollutant inputs. Several outreach events will target specific landowner groups to provide forums on best management practices in forestry management and lakeshore/riparian stream buffer management.
This monitoring project includes lake and stream monitoring and encompasses all of Cass County, and surrounding counties. The project will obtain water quality data for streams; in 2009, lakeshed assessments indicated that many surface waters throughout the county were data deficient. This project will address the need for sufficient data on a county-wide basis and fulfill the State’s intensive watershed monitoring program goals by obtaining water quality data at targeted lake and stream sites.
The project will include lake monitoring on three (3) lakes found in the Rum River watershed in southeastern Crow Wing County (CWC). The project will be conducted in an effort to gain sufficient data on these data-deficient lake sites. All of the proposed monitoring sites are target sites for 2013-2014. One of the goals of the CWC Local Comprehensive Water Plan (CWP) is to establish a countywide Comprehensive Monitoring Plan (CMP).
This project will identify and compile existing nitrate data from groundwaters and surface waters in the Lower Mississippi Basin (LMB) generally and focus on the Root River Watershed. The purpose is to investigate the quantity and quality of existing nitrate data, and to organize it for use in comprehensive watershed strategy development (including assessment, TMDL computation and identification and study of nitrate sources and delivery mechanisms).
This project will provide fiscal resources for South St. Louis County Soil and Water Conservation District (SSLCSWCD) to participate and lead efforts to attain geomorphic data sets, dissolved oxygen assessments, culvert inventory, and civic engagement activities in three major watersheds, Nemadji River, South Lake Superior and St. Louis River. This work is currently being worked on as a part of the MPCA’s Watershed Restoration and Protection Planning efforts.
This project will provide Agency staff, local partners and the citizen volunteers with a framework for building local capacity to design civic engagement and communication / outreach efforts. This will contribute to meaningful and sustained public participation in surface water protection and restoration activities throughout the watershed. MPCA staff, local partners and citizen volunteers will also be able to integrate the results of the biophysical and community assessment into strategies for improving water bodies on the MN 303d List of Impaired Waters
This project will build network and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection in Southeast Minnesota. The cohort will be administered through the Southeast Minnesota Water Resources Board (SE MN WRB) which is an area wide Joint Powers Board (JPB) established to help improve and protect the water resources of the area through coordinating local water planning efforts. This JPB has successfully administered water quality grants in the past that have positively impacted the water resources of this region.
This project will complete a pollutant source identification and subwatershed information report and support the development of a Draft Restoration and Protection Plan (RAPP). It will also support the devlopment of a Implementation Plan that will identify target areas for BMP implementation for bacteria reductions.
This project will develop and organize a first- stage civic infrastructure pilot in Kanabec County, within the membership of the PICKM (Pine, Isanti, Chisago, Kanabec, and Mille-Lacs) Alliance, and with other organizations in the St. Croix Basin. The work will be grounded in the need for sustainable citizen engagement in water quality management. Civic leaders participating in this project will build their own skills for organizing people and working in partnership with Kanabec County SWCD staff and the St. Croix Basin Team to achieve water quality goals.
This project will construct, calibrate, and validate an HSPF watershed model for the Zumbro River watershed. The consultant will produce HSPF watershed models that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDLs). The consultant will clearly demonstrate that the models generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen that are consistent with available sets of observed data.
This project will complete an implementation plan, as required by the Minnesota Pollution Control Agency, for the Zumbro River turbidity TMDL project. It will also revise the Zumbro River Watershed Management Plan (completed 2007) to ensure it continues to reflect local needs, incorporates new information, and develops more effective linkages with related local, state and federal government programs.
The Snake River Watershed Management Board (SRWMB), working in concert with other local governmental units in within the watershed, will assist the MPCA, the project consultant, and other members of the Snake River Watershed Total Maximum Daily Load (TMDL) technical team in the completion of tasks associated with this TMDL project. SRWMB, with assistance from members of the technical team (Kanabec Soil and Water Conservation District (SWCD), Pine SWCD, Aitkin SWCD, and Mille Lacs SWCD) will provide the services to complete this TMDL project.
This project will provide baseline data through water monitoring, recording and analyzing the results of six unassessed rivers/tributaries, three unassessed lakes and five storm water outlets in the city of Mora which drain to the Snake River; promote and implement approved BMP’s.
This project will complete a TMDL equation and report and an implementation plan for Deer Creek. The TMDL report will describe turbidity impacts to aquatic life uses of Deer Creek, correlate turbidity to other pollutants (sediment, suspended solids, etc.), describe and quantify unique turbidity/sediment stressors which include groundwater influences, legacy impacts of the watershed and stream channel, significant in-stream and near stream sources (slumps, bank erosion, etc.) and upland contributions.
This project will result in the development of a Total Maximum Daily Load (TMDL) for turbidity for Deer Creek and the Nemadji River, and will also define which reaches of the Nemadji basin may be meeting standards for turbidity. It will also allow the Carlton County Soil & Water Conservation District (SWCD) to become a full and active partner in this TMDL study and implementation project as well as future restoration and protection projects.
Deer Creek has been identified as an impaired water body. This project will quantify the reductions in pollutant loading that would be necessary to bring water quality in the creek to an acceptable level. The project also includes collection of any additional data needed for stream channel modeling scenarios.
This project determines ambient background per- and polyfluoroalkyl substance (PFAS) levels in urban and non-urban soils. This information will help Minnesota develop management strategies for PFAS contaminated soils.
The goal of this project is to construct, calibrate, and validate one fine-scale Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Duluth Watershed Restoration and Protection Strategy (WRAPS) project area for the simulation period 1995–2012. In addition, an existing condition (post-2012 flood) model scenario will be developed for use in WRAPS development. The contractor will produce HSPF models that can readily be used to provide information to support conventional parameter TMDLs.
This project will support Minnesota's condition monitoring strategy through the collection of water quality data on streams and rivers in the Nemadji River watershed. The Nemadji River watershed is located in southeastern Carlton County and northeastern Pine County. Water quality samples will be collected primarily during weather-related events that affect stream flow such as snowmelt and rainfalls.
BWSR will administer funding to eligible County projects that provide funds and other assistance to low income property owners to upgrade or replace Noncompliant Septic Systems. BWSR will also manage annual reporting completed by each County.
The goal of this project is to construct, calibrate, and validate three HSPF watershed models. The project will result in HSPF models that can readily be used to provide information to support conventional parameter TMDLs. The models are expected to generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
The goal of this project is to construct, calibrate, and validate five Hydrologic Simulation Program FORTRAN (HSPF) watershed models. The outcome will be HSPF models that can readily be used to provide information to support conventional parameter TMDLs. These models will generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
The goal of this project is to supplement and refine the Deer Creek Watershed TMDL Report and Implementation Plan project with detailed determinations of critical source areas and prioritization of the associated management practices, facilitated by additional meetings with local resource managers and validated with a field survey. Completed work will more fully inform the TMDL report and TMDL implementation plan on critical source areas of sediment and quantify those sources.
This project will study the geologic controls on nitrate transport in southeast Minnesota's karst landscape and will also provide datasets for other projects over time.
Get the Lead Out is focused on protecting common loons and wildlife through education and outreach about the danger of lead fishing tackle and promoting lead-free tackle alternatives.