The Pomme de Terre River Association has targeted and identified specific areas and activities required for marked water quality improvement. This project will implement of 16 Water and Sediment Control Basins (WASCOBs), 28 Rain Gardens, 2 Shoreline/ Stream bank stabilization, 10 Waste Pit Closures, 1 Terrace Project, and the enrollment of 1900 acres into conservation practices. These practices in total will directly result in site-specific and watershed-dependent reductions of 17,801 tons of sediment and 17,784 pounds of phosphorous from entering surface waters yearly in the watershed.
This project will accelerate production of County Geologic Atlases (part A). An atlas is a set of geologic maps and associated databases for a county that facilitate informed management of natural resources, especially water and minerals.
The goal of this project is to develop a stream restoration opportunities matrix for the Amity Creek watershed, which will prioritize the various protection and restoration options in the watershed for the Minnesota Pollution Control Agency (MPCA) and local partners.
The goal of the Chippewa River Watershed Protection project is to protect unimpaired areas of the watershed. This will be accomplished through education and outreach with landowners and through implementation of best management practices.
The goal of this project is to construct, calibrate, and validate a Hydrological Simulation Program FORTRAN (HSPF) model for Minnesota portions of the Des Moines River watershed.
The purpose of the project is to fill critical data gaps - this data will provide a foundation for future development of watershed models, Total Maximum Daily Load (TMDL) reports and the creation of a Watershed Restoration and Protection Strategy (WRAPS) report.
The Minnesota DNR and the Minnesota Forest Resources Council work with forest landowners, managers and loggers to implement a set of voluntary sustainable forest management guidelines that include water quality best management practices (BMPs) to ensure sustainable habitat, clean water, and productive forest soils, all contributing to healthy watersheds. This project will monitor the implementation of these forest management guidelines and BMPs on forested watersheds in MN.
The purpose of this project is to develop a framework to implement best management practices (BMPs) on ditches in headwater areas utilizing a partnership between drainage staff and the Greater Blue Earth River Basin Alliance (GBERBA). By replacing failing side-inlets with an alternative design, we can make strides towards our water quality and water quantity goals. The alternative inlets serve to prevent sediment and phosphorus from washing downstream and the design can also alleviate peak flows by temporarily storing stormwater.
The goal of this project is to continue and finalize Hydrological Simulation Program FORTRAN (HSPF) watershed model construction and complete the calibration/validation process. The consultants will produce HSPF watershed model applications for the Lake Superior North and Lake Superior South watersheds that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) projects.
The goal of this project is to construct, calibrate, and validate two Hydrologic Simulation Program FORTRAN (HSPF) watershed models: Lake Superior North and Lake Superior -South. The contractor will produce HSPF models that can readily be used to provide information to support conventional parameter Total Maximum Daily Loads (TMDLs). The contractor will clearly demonstrate that these models generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
Construct, calibrate and validate 3 Hydrologic Simulation Program FORTRAN (HSPF) watershed models for the St Louis, Cloquet, and Nemadji River Watersheds.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models simulate sediment erosion and transport, however these models periodically need to be adjusted to be consistent with the most recent sources of information regarding sediment distribution and loading rates. The goal of this project is to refine the sediment source partitioning and simulation in the Minnesota River basin using all relevant available sources of information.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.
The Lake Superior Beach Monitoring and Notification Program exists to test recreational beach water and notify the public if bacteria levels become unsafe. This project will expand the Beach Program to include additional outreach efforts, sanitary surveys and testing of new technologies to improve the Beach Program. Monitoring results will be used to inform the public, find the sources of bacterial contamination and address polluted runoff from improper waste disposal.
Improved levels of civic engagement and community participation in support for the Watershed Restoration and Protection Strategy (WRAPS) processes in the St. Louis River, Lake Superior South, and Cloquet River Watersheds. Monitoring plans and compiled field data will be provided and summarized that will aid in the future completion of Total Maximum Daily Load Reports (TMDLs) in these watersheds and in the Lake Superior North Watershed.
The Minnesota Pollution Control Agency (MPCA) is a co-sponsor and assists with a portion of the financial support for the International Rainy River-Lake of the Woods Watershed Forum.
This project will gather watershed data necessary for the development of a Watershed Restoration and Protection Strategy (WRAPS) report to maintain and improve water quality for the St Louis River Watershed.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds. Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support. Biological and Water Chemistry Stream Monitoring: Monitoring to assess the conditions of streams in each watershed.
The goal of this project is to analyze and document database architecture, platform, table structures, systems and data fields at six Minnesota agencies (Board of Soil and Water Resources, Department of Natural Resources, MN Department of Agriculture, MN Department of Health, Metropolitan Council, and MN Pollution Control Agency) for 30+ databases related to water.
This project will collect water quality data for 31 sites (22 lakes and 9 stream sites) within the Rainy River Headwaters, Cloquet, and Vermilion major watersheds as part of the 10-year cycle for monitoring Minnesota's waters. Due to the large number and geographic extent of monitoring sites, North St. Louis SWCD (NSLSWCD) is subcontracting with Lake County SWCD and Koochiching County SWCD. An intern from the Vermilion Community College (VCC) Water Resources Program will be hired to conduct monitoring of 4 stream sites and 3 lake sites located between Ely and Virginia.
Within an 11-county area in southeastern Minnesota, two Nutrient Management Specialists will work directly with producers to reduce nitrogen, phosphorus, and fecal coliform runoff into surface and ground water in the region and the Mississippi River. The specialists will help producers create or revise nutrient management plans, implement Best Management Practices for manure and fertilizer use, and set up on-farm demonstration projects to support farmer-to-farmer learning.
The study will assess existing phosphorus data records and create a model to explain phosphorus loading into the Red River of the North. Studies have found that the majority of nutrient loading in the stream located in agricultural areas occurs with sediment loading since nutrients are typically bound to sediment particles.
The project’s first phase includes development and implementation of a sampling plan to investigate stormwater quality within impervious areas; soil borings to determine the soil type; a topographical survey to determine drainage patterns and infrastructure locations; and data gathering of existing infrastructure. A season-long stormwater quality monitoring program will monitor stormwater within the drainage areas that flow directly to the storm sewer, including monitoring of roof runoff and overland flow to determine potential pollutant sources and mitigation options.
The goal of this project is to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data for the benefit of water quality in the Red River Basin.
Phase 1 of the Roseau River Watershed Restaration and Protection Strategy (WRAPS) project will focus on planning and coordination among project partners, creating a civic engagement strategic plan, holding a watershed kick-off meeting, gathering and summarizing available watershed information and data, and developing a data gap monitoring plan.
The Roseau River Watershed Assessment will include the waters of the Roseau River, Sprague Creek, Hay Creek and Hayes Lake. All of the monitoring sites, except one, are located in Roseau County, with the exception being located in Kittson County. This assessment focuses on collection of water chemistry and field parameters at one site on Hayes Lake and seven key sites on the Roseau River, which have been identified by MPCA. These sites are located in the lower reaches of each surface water system.
The goal of this project is to construct, calibrate and validate a watershed model using Hydologic Simulation Program FORTRAN (HSPF) for the Roseau River Watershed.
Approximately 70 percent of all Minnesotans rely on groundwater as their primary source of drinking water. Wells used for drinking water must be properly sealed when removed from service to protect both public health and Minnesota’s invaluable groundwater resources. The Minnesota Department of Health protects both public health and groundwater by assuring the proper sealing of unused wells.
Clean Water funds are being provided to well owners as a 50% cost-share assistance for sealing unused public water-supply wells.
The goal of phase 1 of this project is primarily to support organizational planning and coordination among project partners, forming and training a civic engagement team, creating a civic engagement strategic plan, holding two watershed kick off meetings and gathering and summarizing available water quality data. The completion of phase 1 will help provide significant momentum towards the completion of the future phases of the Watershed Restoration and Protection Strategy (WRAPS) process.
Locating the sources of sediment, phosphorus, and bacteria is integral to reducing the effect they have on a water body. The completion of the West Fork Des Moines River (WFDMR) Targeting and Prioritizing Endeavor will result in a set of data that is the most cost-effective for the implementation of Best Management Practices (BMPs) for all identified priority resources. The results will be expressed as the maximum reduction of a water quality contaminant (e.g. sediment, phosphorus, bacteria) at a priority resource (e.g. an impaired stream) for a given level of investment.