The City of Thief River Falls drinking water is taken from a 135 acre reservoir that is supplied by the Thief River and Red Lake River. Sedimentation and erosion have significant impacts to the waters in Pennington County. The reservoir is filling with sediment faster than expected. Buffers and side water inlets will help reduce sediment and improve water quality for these types of erosion. Buffers would also reduce nutrients polluting the waters in Pennington County and have a beneficial impact to the dissolved oxygen impairment on both the Red Lake and Thief River.
The Accelerated Water Quality Project Implementation Program will increase the connection between landowners, local government units and the landscape to accelerate efforts addressing non-point source loading to surface waters throughout the Red River Valley Conservation Service Area.
The Becker County Drainage Ditch Inventory and Inspection Project is a collaborative, multifaceted approach to develop a GIS-based drainage ditch inventory database system, inventory the current conditions of judicial ditches and adjacent land, and target and prioritize portions of each ditch system for restorative or protective measures.
Phase II of the Burnham Creek Watershed Restoration Project will conduct inventory on 2,050 acres, 85.4 miles of ditch channel within the Burnham Creek Watershed of West Polk County. This inventory includes surveying, assembling all available GIS data, ArcMap, LiDAR, review aerial photography, location of tile intakes, determine size of the erosion sites, and prioritization of severity. The district will partner with the Area DNR Hydrologist and the Polk County Highway Department-Drainage & Ag Inspector to verify data and identify any additional ditch segments.
Increases in crop prices have reduced the acreage of land in conservation set-aside programs such as the Conservation Reserve Program and other marginal land use. Significant conversion of grasslands to cultivated agricultural crops has increased the levels of runoff and sedimentation. Phase III of this project addresses the need to protect vulnerable sites by installing water and sediment basins. These basins are earthen embankments built to temporarily detain sediment-laden runoff, allowing sediment to settle out before runoff is discharged.
This project is Phase IV of work to install water and sediment basins located within Sand Hill Watershed. A water and sediment basin is an earthen embankment built so that sediment-laden runoff is temporarily detained, allowing sediment to settle out before runoff is discharge. These are installed on agricultural cropland where erosion exceeds the allowable soil rate. Minimum detention time to store water is 36 hours for a 10 year, 24 hour runoff event. Starting in 2010, the District received dollars to assist landowners with flood-related projects.
The Prioritization, Targeting, and Measuring Water Quality Improvement Application (PTMA) connects the general qualitative strategies in a Total Maximum Daily Load (TMDL) and Watershed Restoration and Protection (WRAP) and the identification of implementable on-the-ground Best Management Practices (BMPs). Leveraging geospatial data from the International Water Institute this application will be developed for two pilot areas within the Red River Basin.
As part of the FY 2012 funding cycle, the Board of Water and Soil Resources granted funds for development of the Water Quality Decision Support Application (WQDSA). The WQDSA will provide land and water managers with geospatial data and online tools to prioritize, market, and implement actions on the landscape to achieve water quality objectives identified in local and state water plans and to ensure that public funding decisions are strategic and defensible.
The Red Lake Watershed District will create an inspection database for 103E ditches under their drainage authority. The district will acquire a database software solution to conduct field inspections and to track ditch maintenance projects and use the software to facilitate compliance with state statutes. The project will also develop a process for completing the annual inspection and reporting requirements under Statue 103E.
The Reinvest in Minnesota (RIM) Wetlands Partnership Phase V protected and restored 2,041 acres of previously drained wetlands and adjacent native grasslands on 23 conservation easements. All easements have been recorded. $35,000 of funds from other sources were also used.
The Sand Hill River Watershed District along with the West Polk Soil and Water Conservation District (SWCD) will install 18 rock riffles and 2 rock arch rapids to control the grade and stabilize the channelized reach of the Sand Hill River, which contributes thousands of tons of sediment downstream. The entire Sand Hill River is currently impaired for turbidity. The total project length is five miles of channel located between the cities of Fertile and Beltrami in western Polk County.
The South Branch Wild Rice Sediment Reduction Project will implement 45 erosion control structures and 40 acres of filter strips to reduce sediment loading to the South Branch of the Wild Rice River in Becker County. Sediment leaving the project area contributes to water quality impairments downstream where Total Suspended Solids (TSS) are affecting aquatic life and aquatic recreation. This project is projected to reduce sediment loads leaving the project area by 26% and reduce TSS in the Lower Wild Rice River by 7%.
A joint effort of Becker and Clay Soil and Water Conservation District, the Buffalo Red Shallow Lakes and Mainstem Improvement Strategy will reduce nutrient and sediment delivery to 12 impaired lakes and impaired reaches of the Buffalo River through a targeted and prioritized approach to the implementation of Best Management Practices (BMPs). Numerous models have been combined with local knowledge to identify chief sources of constituents in the watershed and to isolate and prioritize implementation sites demonstrating the most significant gains in water quality.