The goal of the project is the development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL.
MSU-Mankato Water Resources Center in the Mankato area will provide conventional pollutant monitoring at the following sites: Beauford Ditch, Big Cobb River, Blue Earth River, Le Sueur River (3), Little Cobb River, Minnesota River (2), Watonwan River.
The overall goal of this project is to perform water quality monitoring duties to accomplish MPCA’s SWAG monitoring efforts at the four sites listed in Section IV of this application for the Middle Minnesota River stream sites selected in Renville, Redwood and Brown counties and allow for the assessment of aquatic life and aquatic recreation use for those reaches of the minor streams.
This project will support the monitoring of two sites on the Cannon River throughout the field seasons of 2013 and 2014 during storm events and baseflow conditions to capture 25 samples per year at each site according to the WPLMN objectives. The information gathered from these samples and site visits will be compiled for reporting purposes and for use in calculating pollutant loading using the FLUX32 model.
This project will monitor six sites within the Minnesota River Basin: Hawk Creek near Maynard, Hawk Creek near Granite Falls, Beaver Creek near Beaver Falls, Yellow Medicine River near Granite Falls, Yellow Medicine River near Hanley Falls, and Spring Creek near Hanley Falls. The sites will be monitored according to MPCA’s Major Watershed Load Monitoring (WPLMN) Standard Operating Procedure, which is the procedure being followed for sites currently monitored by the Hawk Creek Watershed Project (HCWP).
This project will use the We Are Water MN traveling exhibit and the Minnesota Humanities Center's approach to community engagement, relationship building, and storytelling, to increase community capacity for sustainable watershed management in six Minnesota watersheds.
This project will use the We Are Water MN traveling exhibit and the Minnesota Humanities Center's approach to community engagement, relationship building, and storytelling, to increase community capacity for sustainable watershed management in five Minnesota watersheds. The following communities were selected as host sites for this project:
Winona (City of Winona), active hosting period: March 3-April 25, 2022
Lake City (Lake Pepin Legacy Alliance), active hosting period: April 28-June 20, 2022
This project will provide condition monitoring and problem investigation monitoring at the following sites.
Mississippi River: Tributaries include Bassett Creek, Cannon River, Crow River, and Minnehaha Creek.
Minnesota River: Tributaries include Eagle Creek,Riley Creek, and Valley Creek tributary to the St. Croix River
This project will provide administrative support to the Clean Water Partnership (CWP) loan program. By initiating the CWP loan program in Sibley County it will provide low interest loans to bring 21 non-complaint or failing existing systems into compliance by replacing them with new single sewage treatment systems.
The goal of this project is to facilitate strategic networking, relationships, and learning in targeted groups to assess, build, and leverage community capacity (i.e. community resources and values) to increase knowledge of the Blue Earth River watershed’s water resources and increase best management practice (BMP) adoption to restore and protect water quality in the Blue Earth River watershed. Additional goals include providing information that is readily available to the general public for updates on Watershed Approach work in the Blue Earth River watershed.
The Blue Earth SWCD will be monitoring 7 stream sites located in the Le Sueur River Watershed. The stream sites will be monitored at the road crossing locations via bridge, culvert or shore. Onsite conditions will be recorded, water sample readings will be taken for Secchi tube, specific conductance, temperature, pH, DO, and photos taken.
This Total Maximum Daily Load (TMDL) project will develop a TMDL Report and Implementation Plan defining the sources contributing to the impairments and outlining the steps necessary to bring Bluff Creek back to meeting water quality standards.
This project will develop a Final TMDL report and Implementation Plan for the Bluff Creek Watershed. The main outcomes of this project are the development of a Final TMDL Report approved by MPCA and EPA and a Final Implementation Plan approved by MPCA.
This project is to refresh the Cannon River Watershed Hydrologic Simulation Program FORTRAN (HSPF) model. The previous model was developed for the time period of 1995-2012. This phase will extend the model to include data through 2019. All time series data will be updated through 2019, land classification zones will be restructured, hydrology calibration will be updated as needed, and final reporting including technical memo and model package.
The goal of this project is to use a science-based and participatory approach to understanding and promoting conservation practices in the agricultural community.
Complete section 3 of Watershed Restoration and Protection Strategy (WRAPS) document for the Cannon and Zumbro Watersheds and provide input to sections 1 and 2.
This project will conduct a 2017 revision of the South Fork Crow River, North Fork Crow River and Sauk River Watershed Hydrological Simulation Program FORTRAN (HSPF) models and review of the Pine River Watershed HSPF model.
This project will support a civic engagement cohort that will be offered in southwest Minnesota to foster partnering and build capacity of local government, organizations, and residents for effective civic engagement in water protection and restoration. This project will also build networks and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection. The cohort will be administered through the Minnesota River Board (MRB), established in 1995 with a goal of focusing water management efforts on the local level.
This project will finalize HSPF watershed model construction by incorporating internal phosphorus loading in modeled lakes, run a suite of implementation scenarios and generate a GenScn project containing model output. The consultant will produce HSPF watershed models that can readily be used to provide information to support conventional parameter TMDLs. The consultant will deliver all modeling files for baseline and implementation scenarios and provide a GenScn project containing model output.
This project will develop an understanding for how sediment sources change over timescales of individual storm events as well as over the past two centuries. The results will be used by the larger Collaborative for Sediment Source Reduction (CISSR)-Blue Earth research group to establish a sediment budget for the Greater Blue Earth River Basin and understand the effectiveness of various potential mitigation strategies. In addition, these results can be used by MPCA and others to calibrate watershed sediment models.
This project will establish a framework and provide tools for local government and watershed projects to engage the public in a manner that will lead to water quality improvement through targeted and prioritized implementation of watershed management practices. The major components of the watershed approach that will be used for this project include; monitoring, gathering of watershed information, assessment of the data, develop of implementation strategies, and implementation of water quality protection and restoration activities.
This project will build network and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection in Southeast Minnesota. The cohort will be administered through the Southeast Minnesota Water Resources Board (SE MN WRB) which is an area wide Joint Powers Board (JPB) established to help improve and protect the water resources of the area through coordinating local water planning efforts. This JPB has successfully administered water quality grants in the past that have positively impacted the water resources of this region.
This project includes project planning, coordination, stream reconnaissance, and begins the effort towards civic engagement/outreach components of the South Fork Crow River Watershed project. Phase I will focus towards the development of project teams, identifying stakeholders, developing an initial civic engagement strategic plan and conducting limited lake and stream monitoring.
This project approach will include monitoring and gathering of watershed information, assess the data, develop implementation strategies to meet standards and protect waters, implement water quality protection and restoration activities in the watershed. The goal of this project is to establish a framework, and to provide information and tools for local government and watershed organizations to engage the public in a manner that will lead to water quality improvement.
This project will complete a pollutant source identification and subwatershed information report and support the development of a Draft Restoration and Protection Plan (RAPP). It will also support the devlopment of a Implementation Plan that will identify target areas for BMP implementation for bacteria reductions.
This project will complete spatial and temporal revisions , recalibration and validation of 7 watershed HSPF models. These fully functioning calibrated validated executable models will simulate hydrology, sediment (sand, silt, and clay), temperature, phosphorus, nitrogen, dissolved oxygen, biochemical oxygen demand, and algae at the 12-digit HUC subbasin scale (or finer).
This project will Install buffer strips along 25 miles of ditches in the watershed, replace 50 open tile intakes, and hold workshops in the watershed to increase conservation tillage, nutrient and pesticide management, conservation drainage and restoring wetlands.
This project will offer incentives to protect 80 acres of land in filter strips and highly erodible lands adjacent to the rivers; construct 9 sediment and water control basins or terraces; replace 35 open tile intakes and advocate wetland restorations and grassland easement programs; organize a Friendship Tour to bring together Minnesota farmers, county commissioners, farm organizations, local, state and federal agency personnel to experience the watershed, farming practices, discuss future project ideas and strengthen relationships; and upgrade 37 subsurface sewage treatment systems by off
This project will continue the offering of low-interest loans to citizens, some of whom may not be able to acquire funding otherwise, for upgrading 50 septic systems to ensure compliance with state rules. Grant funds will be used to administer the low-interest loan program.
This project determines ambient background per- and polyfluoroalkyl substance (PFAS) levels in urban and non-urban soils. This information will help Minnesota develop management strategies for PFAS contaminated soils.
River Watch (RW) enhances watershed understanding and awareness for tomorrow’s decision-makers through direct hands-on, field-based experiential watershed science. High School based teams throughout the Minnesota River Basin participate in a variety of unique and innovative watershed engagement opportunities such as Water Quality Monitoring and Macroinvertebrate surveys that are suited to their school, community, and watershed needs.
BWSR will administer funding to eligible County projects that provide funds and other assistance to low income property owners to upgrade or replace Noncompliant Septic Systems. BWSR will also manage annual reporting completed by each County.
The goal of the High Island Creek Watershed Pollutant Load Monitoring project is to assist the Minnesota Pollution Control Agency (MPCA) with meeting the objectives of the Watershed Pollutant Load Monitoring Network (WPLMN). This will be accomplished by providing staff support throughout fiscal years 2016 and 2017 to conduct water chemistry monitoring at two specified stream locations from ice out through October 31 capturing snow melt, rainfall events and base flow conditions.
Get the Lead Out is focused on protecting common loons and wildlife through education and outreach about the danger of lead fishing tackle and promoting lead-free tackle alternatives.
The purpose of this project is to develop a framework to implement best management practices (BMPs) on ditches in headwater areas utilizing a partnership between drainage staff and the Greater Blue Earth River Basin Alliance (GBERBA). By replacing failing side-inlets with an alternative design, we can make strides towards our water quality and water quantity goals. The alternative inlets serve to prevent sediment and phosphorus from washing downstream and the design can also alleviate peak flows by temporarily storing stormwater.
This project will gather watershed data necessary for the development of a Watershed Restoration and Protection Strategy (WRAPS) report to maintain and improve water quality for the Hawk Creek Watershed.
This project will assess 4 lakes and 17 stream sites. The four lakes will be assessed for total phosphorus, chlorophyll-a, and secchi data by the HCWP staff. Staff will monitor East Twin, West Twin, West Solomon, and St. John’s Lakes for total phosphorus, chlorophyll-a, and Secchi disk readings. In order to obtain a sufficient dataset. Ten samples will be collected over 2 years. Water samples at 17 stream locations for chemical analyses, including intensive watershed monitoring sites and “non-target” sites.
The goal of the High Island Creek Watershed Pollutant Load Monitoring project is to assist the Minnesota Pollution Control Agency (MPCA) with meeting the objectives of the Watershed Pollutant Load Monitoring Network (WPLMN). This will be accomplished by conducting water chemistry monitoring at two specified stream locations from ice out through October 31, capturing snow melt, rainfall events and base flow conditions. In addition, project staff will compile and submit the required data, information, and reports, and calculate pollutant loads using the FLUX32 model.
This project will support construction of three watershed framework models built using the Hydrologic Simulation Program FORTRAN (HSPF). These executable models will simulate hydrology at the subbasin scale. An HSPF model will be built for each of three major watersheds: the Crow River/North Fork Crow River, the South Fork Crow River, and the Sauk River.