This project will gather watershed data necessary for the development of a Watershed Restoration and Protection Strategy (WRAPS) report to maintain and improve water quality for the Hawk Creek Watershed.
The goal of the High Island Creek Watershed Pollutant Load Monitoring project is to assist the Minnesota Pollution Control Agency (MPCA) with meeting the objectives of the Watershed Pollutant Load Monitoring Network (WPLMN). This will be accomplished by conducting water chemistry monitoring at two specified stream locations from ice out through October 31, capturing snow melt, rainfall events and base flow conditions. In addition, project staff will compile and submit the required data, information, and reports, and calculate pollutant loads using the FLUX32 model.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.
The goal of this project is to finalize the Lake Pepin Watershed phosphorus total maximum daily load (TMDL) report by using the existing information and documentation prepared under previous contracts to prepare one TMDL report that addresses the impairments on the mainstem of the Mississippi River. Information developed to date for draft TMDLs on the Minnesota River mainstem will be documented for later use by the Minnesota Pollution Control Agency.
The goal of this project is to analyze and document database architecture, platform, table structures, systems and data fields at six Minnesota agencies (Board of Soil and Water Resources, Department of Natural Resources, MN Department of Agriculture, MN Department of Health, Metropolitan Council, and MN Pollution Control Agency) for 30+ databases related to water.
The State of Minnesota has adopted a ten year cycle for managing water quality for each of the 80 major watersheds in the state. Every ten years, each major watershed will undergo a surface water assessment and a Watershed Restoration and Protection Strategy (WRAPS) project. The North Fork Crow River WRAPS process is entering its second round which will focus both on addressing data gaps identified in the approved NFCRW Comprehensive Watershed Plan and on addressing additional required Total Maximum Daily Load (TMDL) studies required by the United States Environmental Protection Agency.
Phase I built the foundation for the South Fork Crow River Watershed Restoration and Protection Strategy (WRAPS) and created a civic engagement plan. Civic engagement strategies were identified to create greater communication and watershed activities. Phase II provided the analytical and strategic foundation essential to prescribing protection and restoration strategies. These strategies focus on both protecting current fully supporting and restoring impaired surface water resources to water quality standards in the South Fork watershed.