The Zumbro River Watershed Pollutant Load Monitoring Network (WPLMN) project will continue existing efforts to calculate seasonal pollutant loads for the Root River. The Zumbro Watershed Partnership (ZWP) along with Olmsted County Environmental Services will assist the Minnesota Pollution Control Agency (MPCA) with water quality monitoring and pollutant load calculations of four sub-watershed sites. Approximately 50 grab samples per site (total of 200) between ice-out and October 31 of 2016 and 2017 will be collected along with field measurements and observations.
The goal of this project is to facilitate strategic networking, relationships, and learning in targeted groups to assess, build, and leverage community capacity (i.e. community resources and values) to increase knowledge of the Blue Earth River watershed’s water resources and increase best management practice (BMP) adoption to restore and protect water quality in the Blue Earth River watershed. Additional goals include providing information that is readily available to the general public for updates on Watershed Approach work in the Blue Earth River watershed.
The Blue Earth SWCD will be monitoring 7 stream sites located in the Le Sueur River Watershed. The stream sites will be monitored at the road crossing locations via bridge, culvert or shore. Onsite conditions will be recorded, water sample readings will be taken for Secchi tube, specific conductance, temperature, pH, DO, and photos taken.
The Cottonwood River watershed is one of the last remaining watersheds to complete Cycle I of the Watershed Restoration & Protections Strategies (WRAPS) process. The scope of this project upon completion is have two reports developed; a Watershed Restoration and Protection Strategies report and a Total Maximum Daily Load (TMDL) for the entire watershed.
The goal of the High Island Creek Watershed Pollutant Load Monitoring project is to assist the Minnesota Pollution Control Agency (MPCA) with meeting the objectives of the Watershed Pollutant Load Monitoring Network (WPLMN). This will be accomplished by providing staff support throughout fiscal years 2016 and 2017 to conduct water chemistry monitoring at two specified stream locations from ice out through October 31 capturing snow melt, rainfall events and base flow conditions.
The goal of the High Island Creek Watershed Pollutant Load Monitoring project is to assist the Minnesota Pollution Control Agency (MPCA) with meeting the objectives of the Watershed Pollutant Load Monitoring Network (WPLMN). This will be accomplished by conducting water chemistry monitoring at two specified stream locations from ice out through October 31, capturing snow melt, rainfall events and base flow conditions. In addition, project staff will compile and submit the required data, information, and reports, and calculate pollutant loads using the FLUX32 model.
The consultant LimnoTech will support response to Total Maximum Daily Load (TMDL) comments the peer review process, United States Environmental Protection Agency and public notice. They will then revise the TMDL document as needed and attend internal and external project meetings.
The goal of this project is to finalize the Lake Pepin Watershed phosphorus total maximum daily load (TMDL) report by using the existing information and documentation prepared under previous contracts to prepare one TMDL report that addresses the impairments on the mainstem of the Mississippi River. Information developed to date for draft TMDLs on the Minnesota River mainstem will be documented for later use by the Minnesota Pollution Control Agency.
This project addresses twelve lakes that have aquatic recreation impairments as identified by eutrophication indicators and 53 impairments on 45 stream reaches in the Minnesota River Mankato and Watonwan River watersheds. The project will develop Total Maximum Daily Loads (TMDLs) addressing impaired lakes and streams in the Minnesota River–Mankato and Watonwan River watersheds. A TMDL establishes the maximum amount of a pollutant allowed in a waterbody and serves as the starting point or planning tool for restoring water quality.
The goal of this project is to extend existing Hydrologic Simulation Program FORTRAN (HSPF) models through 2017 for the following major watersheds: Redwood, Cottonwood, Watonwan, Blue Earth, Le Sueur, Pomme de Terre, Minnesota River-Headwaters, and Lac Qui Parle watersheds.
The goal of this project is to simulate up to ten scenarios using the recently completed Hydrologic Simulation Program FORTRAN (HSPF) model for the Mississippi River–Lake Pepin (MRLP) watershed. The mode will be used to investigate a variety of management scenarios to support further planning work and implementation in the watershed. Model scenarios are being developed to inform 1W1P planning activities and future implementation.
The State of Minnesota has adopted a ten year cycle for managing water quality for each of the 80 major watersheds in the state. Every ten years, each major watershed will undergo a surface water assessment and a Watershed Restoration and Protection Strategy (WRAPS) project. The North Fork Crow River WRAPS process is entering its second round which will focus both on addressing data gaps identified in the approved NFCRW Comprehensive Watershed Plan and on addressing additional required Total Maximum Daily Load (TMDL) studies required by the United States Environmental Protection Agency.
Olmsted SWCD will work in coordination with Fillmore SWCD and Root River (Houston) SWCD to collect water quality and chemistry parameters on 14 Minnesota Pollution Control Agency approved sites within the Root River watershed during the 2018-2019 sampling season.
Parameters to be tested include:TSS, TP, Chloride, CaCO3 (hardness), E. Coli, Chlorophyll A, Specific Conductance, Temp, pH, DO, NO2/NO3.
Wood Environment & Infrastructure Solutions, Inc. (Wood) was selected for this project to conduct work in support of the per- and polyfluoroalkyl substances (PFAS) program. This project is a multi-phased pilot study to further validate and refine potential locations across Minnesota that may have historically been, or are currently, contaminated with PFAS. The primary objective is to evaluate potential PFAS locations, specifically compost sites, to determine presence or absence of PFAS at each site.
The overall goal of this project is to perform water quality monitoring and load calculation duties to accomplish Minnesota Pollution Control Agency (MPCA) Watershed Pollutant Load Monitoring Network (WPLMN) monitoring efforts at the seven sites within the Redwood and Cottonwood River watersheds as well as the Minnesota River site near Morton. To accomplish this goal the requested funds will provide for technician’s time, mileage, lab costs, supplies, as well as equipment calibration and upkeep.
The Redwood River watershed is one of the last remaining watersheds to complete Cycle I of the Watershed Restoration & Protections Strategies (WRAPS) process. The scope of this project upon completion is have two reports developed; a Watershed Restoration and Protection Strategies report and a Total Maximum Daily Load (TMDL) for the entire watershed.
The purpose of this project is to assess the amount of land in the Root River watershed that is treated by structural best management practices (BMPs); more specifically, Water and Sediment Control Basins. The 2016 Root River Watershed Restoration and Protection Strategy (WRAPS) report recommended reducing sediment loss from upland areas and reducing nitrate loading to streams from runoff. Understanding the location and density of these BMPs will is important for targeting future watershed protection and restoration efforts.
This project will develop Total Maximum Daily Load (TMDL) allocations and complete a final draft TMDL report for the five lake impairments listed for the South Fork Crow River Watershed.
The purpose of this effort is to create an educational video that will “bring to life” geo-scientific information related to groundwater movement in southeast Minnesota. This video will be used by the Minnesota Pollution Control Agency (MPCA), Minnesota Department of Agriculture (MDA) and other regional partners to help explain the local geology and related groundwater movement. It is anticipated that the video will be used at meetings and other events related to water resource management and natural resource issues. In addition, three stand alone high resolution graphics will be created.
The project will work with county and Waseca Soil and Water Conservation District staff to increase knowledge and participation in the Watershed Approach efforts and provide input to the Watershed Restoration and Protection Strategies (WRAPS) document.
This project will extend, calibrate, and validate watershed models using the Hydrological Simulation Program - FORTRAN (HSPF) watershed model for the Mississippi Headwaters, Leech Lake, Pine, and South Fork Crow Watersheds.
In previous phases of work, a Hydrologic Simulation Program FORTRAN (HSPF) model of the Zumbro River Watershed was developed to simulate hydrology and water quality for the 1995-2009 simulation period (Phase I), applied to evaluate various management scenarios for reducing sediment and nutrient loading (Phase II), and used to develop Total Maximum Daily Loads (TMDLs) for impaired stream segments and inform development of a nutrient TMDL for Rice Lake (Phase III).
2019: The Olmsted County Soil and Water Conservation District will assist the Minnesota Pollution Control Agency (MPCA) with water quality monitoring and pollutant load calculations at four sub-watershed sites in the Zumbro River Watershed. Approximately 25 grab samples per site between ice-out and October 31 of 2019 will be collected along with field measurements and observations.
This project will build upon the outreach and education efforts of the Zumbro Watershed Restoration and Protection Strategy (WRAPS). The targeted area will be residents of the Zumbro River Watershed, specifically individuals and organizations that are not professionally involved in managing natural resources. This project will provide necessary outreach and education during the interim between the Zumbro WRAPS and beginning the One Watershed, One Plan process.