The MPCA has identified 13 stream sites in the watershed to characterize watershed water quality. This project will supplement and complement the identification of the top 50 sites in the watershed that are contributing to water impairment and also help in identification of priority watersheds in the re-write of the watershed comprehensive plan. Water samples and field measurements will be collected at each monitoring location ranging from baseline events to high flow events.
This project will obtain spatial and long-term pollutant load information from the Root River watershed in Southeast Minnesota. To accomplish this, the Fillmore Soil and Water Conservation District (SWCD) will assist the MPCA with water quality monitoring and annual pollutant loading calculations. Approximately 25 grab samples will be collected/site/year at 5 sites within the Root River watershed (totaling 125 grab samples/year). Annual load calculations for each site will be determined using the FLUX32 model.
To provide professional development for two staff members at the national American Association for State and Local History Conference in St. Paul, September 17-20, 2014.
To provide professional development for two staff members at the national American Association for State and Local History Conference in St. Paul, September 17-20, 2014.
To provide professional development for two staff members at the national American Association for State and Local History Conference in St. Paul, September 17-20, 2014.
To provide professional development for two staff members at the national American Association for State and Local History Conference in St. Paul, September 17-20, 2014.
The Zumbro River Watershed Pollutant Load Monitoring Network (WPLMN) project will continue existing efforts to calculate seasonal pollutant loads for the Root River. The Zumbro Watershed Partnership (ZWP) along with Olmsted County Environmental Services will assist the Minnesota Pollution Control Agency (MPCA) with water quality monitoring and pollutant load calculations of four sub-watershed sites. Approximately 50 grab samples per site (total of 200) between ice-out and October 31 of 2016 and 2017 will be collected along with field measurements and observations.
This project targets nutrient reductions within the Mayhew and Big Elk Lake watersheds. The Benton Soil and Water Conservation District will work with farmers in implementing a variety of conservation practices including, but not limited to cropland erosion control projects, riparian pasture management, and nutrient management and feedlot pollution control systems. These strategies were identified through Total Daily Maximum Load Studies.
Little Rock Lake experiences severe algae blooms due to excess phosphorus and these blooms are the worst known regionally. The goal of this project is to reduce algae blooms, improve water clarity, and avoid risk of drinking water contamination. The project will result in installing one farmer nutrient management project , four cover crops, two lakeshore buffer strips, six septic systems that also demonstrated an imminent threat to public health, six erosion control projects , one wetland restored, and one feedlot runoff control system.
A completed Total Maximum Daily Load (TMDL) study has identified mid to late summer phosphorus loading as a significant stressor to lakes and streams within the Big Elk Lake watershed. While this comprehensive study serves its role as the unifying document that identifies pollutants and sources, further work is required in order to develop site-specific Best Management Practices, design these practices, and oversee their implementation in order to reach clean water goals.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
These funds will be utilized in cost-share for landowners to install Agricultural Best Management Practices following Little Rock Lake TMDL Implementation Plan. Example of projects include Feedlot Improvements, Waste Storage Facilities, Erosion Control BMPs, Filter Strips and Streambank Stabilizations. An estimated 830 pounds per year of phosphorus and 800 tons of sediment will be reduced annually.