The goal of this project is to address public comments on the public noticed draft Watershed Restoration & Protection Strategy (WRAPS) study and Total Maximum Daily Load (TMDL) report for the watershed, and to produce a final draft WRAPS study and TMDL report ready for final approval by the United States Environmental Protection Agency (USEPA) and Minnesota Pollution Control Agency (MPCA).
The overall goal is to develop a Watershed Restoration and Protection Strategy (WRAPS) Report and Total Maximum Daily Load (TMDL) Study that will address water quality impairments and maintain or improve water quality throughout the Clearwater River watershed. The study will identify sources of pollutants to the streams and lakes, allocate pollution reduction goals, and prioritize and identify implementation strategies to maintain or improve water quality in key lakes and streams in the watershed.
The project will include lake monitoring on seventeen lakes found in the Mississippi River - Brainerd watershed in East Central Crow Wing County (CWC). The project will be conducted in an effort to gain data on these data-deficient lakes. One of the goals of the CWC Local Comprehensive Water Plan (CWP) is to establish a countywide Comprehensive Monitoring Plan (CMP). Surface water assessment monitoring will enable state 303(d) and 305(b) assessments and provide a better understanding of these lakes.
The goal of this project is to refine the segmentation, extend the simulation period, and recalibrate an existing Hydrologic Simulation Program FORTRAN (HSPF) watershed model for the Rum River Watershed.
Phase 1 of this project is primarily geared towards project planning and coordination among project partners, developing an initial civic engagement strategic plan, holding a watershed kick-off meeting, and gathering and summarizing available water quality data.
The goal of this project is to construct, calibrate, and validate a Hydrologic Simulation Program FORTRAN (HSPF) watershed model for the Otter Tail watershed. The contractor will produce a HSPF watershed model application(s) that can readily be used to provide information to support conventional parameter Total Maximum Daily Loads (TMDLs). The contractor will clearly demonstrate that this model generates predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen that are consistent with available sets of observed data.
This project is for Minnesota Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, to work with regional partners to promote understanding and protection of watersheds, and to organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
The International Water Institute (IWI) will monitor 42 sites (3 basin, 12 major watershed, and 27 subwatershed) in the Red River and Upper Mississippi River Basins intensively during the contract period. There will also be 5 sites in the Red River Basin where mercury samples will be collected and sent to Minnesota Department of Health for analysis. The IWI will collect water samples across the range of flow conditions targeting sample collection at times of moderate to high flow.
The purpose of this project is to improve understanding of primary productivity in the Red River and the diversity and population structure of the algal communities occurring along the river system. This will be accomplished through taxonomic identification of periphyton and phytoplankton assemblages necessary for characterizing responses to nutrient gradients along the Red River of the North.
This project will focus on Watershed Restoration and Protetion Strategy (WRAPS) and Total Maximum Daily Load (TMDL) report development for the Rum River Watershed, which includes Mille Lacs Lake (the second largest lake in Minnesota) and the Rum River of which Mille Lacs Lake is the headwaters. The project will produce a plan that partners and citizens will be able to implement, a framework for citizen engagement, and a set of watershed management activities that will achieve water quality standards for all impairments within the watershed.
The goal of this project is to conduct water quality monitoring at the ten lakes within the Todd County portions of the Mississippi River Brainerd and the one lake within the Todd County portion of the Mississippi River Sartell. Sampling will be done once per month between May 2016 and September 2016 and then again once per month May 2017 through September 2017.
This project will extend the simulation period for the Hydrological Simulation Program - FORTRAN (HSPF) models for the Grand Rapids, Brainerd, Crow Wing, Redeye, Long Prairie, Sartell, Sauk, St. Cloud, and Crow watersheds, and review and comment on the calibration.
This project will extend, calibrate, and validate watershed models using the Hydrological Simulation Program - FORTRAN (HSPF) watershed model for the Mississippi Headwaters, Leech Lake, Pine, and South Fork Crow Watersheds.