This project will conduct a 2017 revision of the South Fork Crow River, North Fork Crow River and Sauk River Watershed Hydrological Simulation Program FORTRAN (HSPF) models and review of the Pine River Watershed HSPF model.
This first year of the project will collect available data relevant to the TMDL development, determine the data sets best suited for the TMDL development. Gain a better understanding of the watershed and impaired lakes, and assessment of all potential sources (internal and external) of the causes of lake impairment. EOR will also review the data produced by the MPCA for the impairment assessment for each of the lakes during year 1 of the project.
This project willl complete a final TMDL document that will be submitted to EPA for approval. Document will include Lake Osakis, Clifford Lake, Faille Lake, and Smith Lake impairments. A final technical memorandum describing the elements of the model framework and any deviations from the recommended construction methodology will be also be provided with the submission of the watershed models.
This project will construct three watershed framework models built using the Hydrologic Simulation Program FORTRAN. These executable models will simulate hydrology at the 12-digit HUC subbasin scale. An HSPF model will be built for each of the following 8-HUC watersheds: Red Lake River (09020303) and the Clearwater River (09020305).
This project will complete a comprehensive study, following a rational, step-wise process of data analysis, response modeling and comparison to the water quality standards, followed by impairment diagnosis, modeling of improvement and protection options, and development of a WRAP Report and Implementation Plan for Sunfish lake, Thompson lake, Pickerel lake, and Rogers lake.
This project covers activities necessary to complete the major watershed restoration and projection project. The major objectives this project covers include contract administration, watershed coordination, stressor ID activities, identifying priority management zones, engage watershed citizens, and the creation of watershed restoration and protection plans.
This project will finalize HSPF watershed model construction by incorporating internal phosphorus loading in modeled lakes, run a suite of implementation scenarios and generate a GenScn project containing model output. The consultant will produce HSPF watershed models that can readily be used to provide information to support conventional parameter TMDLs. The consultant will deliver all modeling files for baseline and implementation scenarios and provide a GenScn project containing model output.
This project will consist of identifying the candidate causes of biological stress and to develop and implement a public and stakeholder participation process that encourages local ownership of water quality problems and solutions. The Stressor ID process will be done using existing data, identifying data gaps, gathering new data, developing load duration curves, and refinement of the candidate causes. The civic engagement work will include compiling and reviewing existing data on community capacity and assessing that information.
This project will provide Agency staff, local partners and the citizen volunteers with a framework for building local capacity to design civic engagement and communication / outreach efforts. This will contribute to meaningful and sustained public participation in surface water protection and restoration activities throughout the watershed. MPCA staff, local partners and citizen volunteers will also be able to integrate the results of the biophysical and community assessment into strategies for improving water bodies on the MN 303d List of Impaired Waters
This project will build network and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection in Southeast Minnesota. The cohort will be administered through the Southeast Minnesota Water Resources Board (SE MN WRB) which is an area wide Joint Powers Board (JPB) established to help improve and protect the water resources of the area through coordinating local water planning efforts. This JPB has successfully administered water quality grants in the past that have positively impacted the water resources of this region.
This project includes project planning, coordination, stream reconnaissance, and begins the effort towards civic engagement/outreach components of the South Fork Crow River Watershed project. Phase I will focus towards the development of project teams, identifying stakeholders, developing an initial civic engagement strategic plan and conducting limited lake and stream monitoring.
This project will complete an implementation plan, as required by the Minnesota Pollution Control Agency, for the Zumbro River turbidity TMDL project. It will also revise the Zumbro River Watershed Management Plan (completed 2007) to ensure it continues to reflect local needs, incorporates new information, and develops more effective linkages with related local, state and federal government programs.
BWSR will administer funding to eligible County projects that provide funds and other assistance to low income property owners to upgrade or replace Noncompliant Septic Systems. BWSR will also manage annual reporting completed by each County.
This project will continue HSPF watershed model construction beyond the initial framework development. The consultant will add representation of point source discharges to the model. The consultant will also compile flow data for the purposes of calibration and validation. Finally, an initial hydrologic calibration will be performed and submitted for approval.
The goal of this project is to finalize the draft Lake Pepin Total Maximum Daily Load (TMDL) Report, issue it for public comment, address comments, and finalize the report. Lake Pepin is impaired by high levels of nutrients that cause excessive growth of algae. High levels of sediment, carried in by major river systems, also affect the lake. The sediment is filling in the lake at a much faster rate than before Minnesota was settled and intensely farmed. Nutrients and sediment are distinct yet inter-related pollutants, and are being addressed in separate TMDL reports.
This project will gather watershed data to support the development of a Watershed Restoration and Protection Strategy with parameter-specific targets that will maintain or improve water quality for the Long Prairie River Watershed. This project will also provide an important framework for civic and citizen engagement and communication, contributing to long-term public participation in surface water protection and restoration activities throughout the watershed.
This Sauk River Watershed District project will conduct the Whitney Park river clean-up, adopt a river program and other community events as part of their healthy living programs; will collaborate with the city of St. Cloud to install a rain garden demonstration site at Whitney Park; use local radio and public television stations to promote the District’s “neighborhood rain garden initiative” and other incentive programs.
This project will plan, implement, and report on a community engagement strategy for identifying community/landowner opportunities, obstacles, and opinions on land management and water quality that will result in the identification of Watershed Restoration and Protection Strategies (WRAPS) input for the Sibley, Nicollet, Renville, McLeod, Rice, and LeSueur County areas of the Lower Minnesota River watershed.
The project will plan, implement, and report on a community engagement strategy for identifying community/landowner opportunities, obstacles, and opinions on land management and water quality that will result in the identification of Watershed Restoration and Protection Strategies (WRAPS) input for the Sibley, Nicollet, Renville, McLeod, Rice, and Le Sueur County areas of the Lower Minnesota River watershed.
This project will support water quality monitoring and data analysis in the Red River Basin. The monitoring will assist in providing water chemistry data needed to calculate annual pollutant loads for the Major Watershed Load Monitoring Program (MWLMP) and provide short term data sets of select parameters to other MPCA programs.
The purpose of this monitoring project is to maintain water quality data collection, build upon existing data for Phase II of the Intensive Watershed Monitoring approach, and develop a better understanding of what impacts the rivers located in central Minnesota specifically in the North Fork Crow Watershed.
This project addresses five reaches of the Minnesota River that have aquatic recreation impairments as identified by high concentrations of E. coli. The project will describe the water quality impairments, complete pollutant source assessments, establish loading capacities and allocations for the impairments, and develop implementation strategies.
The goal of this project is to complete the construction, calibration, and validation of a Hydrological Simulation Program – FORTRAN (HSPF) watershed model for a portion of the Mississippi River-Lake Pepin watershed.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
Minnesota Erosion Control Association (MECA) will offer three one-day training session intended to educate permittees on the requirements of the Municipal Separate Storm Sewer System (MS4) permit. The focus of these workshops will be on conducting inspections and various hot topics.
This contract will be to initiate the second cycle of the North Fork Crow River Watershed Restoration and Protection Strategies (WRAPS) development. The project will provide needed information and analysis to make sure that implementation strategies are well thought out and targeted. The result will be a framework for civic and citizen engagement and communication, which will contribute to long-term public participation in surface water protection and restoration activities throughout the watershed.
The goal of this project is to refine the nutrient and algae simulation in the Minnesota River basin using all relevant available sources of information. The outcome of this work order is a revised Hydrological Simulation Program – FORTRAN (HSPF) watershed model application for the Minnesota River basin that correctly represents nutrient sources and algae.
The goal of this project is to complete the construction, calibration, and validation of a Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Otter Tail River watershed. The contractor will produce an HSPF model that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) Studies. The model will generate predicted output for hydrology, sediment, nutrients, and dissolved oxygen that is consistent with observed data.
The goal of this project is to better target restoration activities in the Cannon River watershed via a paleolimnological study of a selected set of the lakes addressed in the Total Maximum Daily Load (TMDL) for the watershed. The goals are to better constrain lake phosphorus budgets, and determine the magnitude of ecological change experienced by a range of lake types.
This project will collect real-time parameter data for specific conductance, water temperature, pH, dissolved oxygen, turbidity and stream flow at the United States geological Survey (USGS) gaging stations located at Fargo, ND and Grand Forks, ND on the Red River of the North; and publish the data both on the USGS NWIS website and in the USGS Annual Report.
The goal of this project is to collect real-time, parameter data for specific conductance, water temperature, pH, dissolved oxygen, turbidity, and stream flow at the United States Geological Survey (USGS) gaging stations located at Fargo and Grand Forks, ND on the Red River of the North. The data will be published on the USGS National Water Information System (NWIS) website.
The goal of this project is to extend, calibrate, and validate the existing Hydrological Simulation Program – FORTRAN (HSPF) watershed models in the Red Lake River, Thief River, Clearwater River and Red Lake watersheds.
International Water Institute (IWI) staff will monitor 24 sites in the Bois de Sioux, Mustinka (2 sites), Buffalo (8 sites), Red Lake (4 sites), Sandhill (3 sites), Thief (2 sites), and Tamarac River (3 sites) Watersheds intensively over a 2 year period in an attempt to collect 25 samples per year at each site. If conditions allow for the collection of all planned samples, 1200 stream samples will be collected over the time period. Monitoring will include field measurements, observations, and at least three photographs during each site visit.
MN Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
This project will complete the final Implementation Plan, semi-annual and final reports and hold project meetings. The Implementation Plan will identify target areas and priorities for implementation strategies to improve water quality for Bluff Creek. This project will build the groundwork so Bluff Creek will meet water quality standards for aquatic life in the future.
The goal of this project is to extend, calibrate, and validate the existing Hydrological Simulation Program FORTRAN (HSPF) model for the Snake River Watershed in the Red River Basin. The contractor will produce an HSPF model that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) Studies. The model will generate predicted output for hydrology, sediment, nutrients, and dissolved oxygen that is consistent with observed data.
The goal of this project is to utilize the information and data collected in the Phase I project to develop a Watershed Restoration and Protection Strategy (WRAPS) Report and Total Maximum Daily Load (TMDL) Study that will address water quality impairments and maintain or improve water quality throughout the Snake-Middle River Watershed. The Phase II project will allocate pollutant reductions goals, and prioritize and identify implementation strategies to maintain or improve water quality in key streams in the watershed.
The goal of this project is to utilize the information and data collected in the Phase 1 project to develop a Watershed Restoration and Protection Strategy (WRAPS) report and Total Maximum Daily Load (TMDL) study that will address water quality impairments and maintain or improve water quality throughout the Snake-Middle River Watershed. The Phase 2 project will allocate pollutant reductions goals and prioritize and identify implementation strategies to maintain or improve water quality in key streams in the watershed.