Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
This project involves the extension and update of the Hydrological Simulation Program FORTRAN (HSPF) model for the Bois de Sioux and Mustinka watersheds.
This project will address United States Environmental Protection Agency (EPA) comments on the preliminary draft Total Maximum Daily Load (TMDL) study and Minnesota Pollution Control Agency (MPCA) comments on the pre-public notice draft TMDL study and Watershed Restoration and Protection Strategy (WRAPS) report, and produce the public notice draft TMDL study and the public notice draft WRAPS report ready for public review and comment. Conduct one public meeting for each watershed to present public notice drafts of the TMDL study and WRAPS report for each watershed.
The purpose of this project is to project the ground water aquifer serving the City of Long Prairie through assisting low income landowners in the replacement of 12 sub-surface treatment systems that have been documented as failing to protect groundwater within the Long Prairie Drinking Water Supply Management Area. Although the primary driver is ground water protection, replacing these failing systems will also protect surface water of which Lake Charlotte is in close proximity.
This project will conduct a 2017 revision of the South Fork Crow River, North Fork Crow River and Sauk River Watershed Hydrological Simulation Program FORTRAN (HSPF) models and review of the Pine River Watershed HSPF model.
The Wright Soil and Water Conservation District has partnered with the Crow River Organization of Water and the Natural Resources Conservation Service on phase three of a comprehensive sediment reduction project that focuses on stabilizing seven of the most active gully erosion sites on the North Fork Crow River. These seven areas were chosen due to the high level of turbidity and low dissolved oxygen within that stretch of the North Fork Crow River, which has led to biological and turbidity impairments.
The Minnesota DNR and the Minnesota Forest Resources Council work with forest landowners, managers and loggers to implement a set of voluntary sustainable forest management guidelines that include water quality best management practices (BMPs) to ensure sustainable habitat, clean water, and productive forest soils, all contributing to healthy watersheds. This project will monitor the implementation of these forest management guidelines and BMPs on forested watersheds in MN.
The purpose of this project is to identify effective irrigation and nutrient management best management practices and technologies and the barriers that prevent irrigators, producers, and other agricultural partners from adopting them in Otter Tail County. The primary goal is to reduce nitrate in areas where groundwater is susceptible to contamination as mapped by The Minnesota Department of Health by identifying effective BMPs and addressing the barriers to their adoption.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.
The goal of this project is to finalize the draft Lake Pepin Total Maximum Daily Load (TMDL) Report, issue it for public comment, address comments, and finalize the report. Lake Pepin is impaired by high levels of nutrients that cause excessive growth of algae. High levels of sediment, carried in by major river systems, also affect the lake. The sediment is filling in the lake at a much faster rate than before Minnesota was settled and intensely farmed. Nutrients and sediment are distinct yet inter-related pollutants, and are being addressed in separate TMDL reports.
The Lower Mississippi River Feedlot Management in MN project will be leveraging State funding from BWSR to provide match for a United States Department of Agriculture Natural Resources Conservation Service (USDA-NRCS) Regional Conservations Partners Program (RCPP). BWSR will provide technical and financial assistance to plan and design projects to mitigate feedlot runoff from smaller (less than 300 animal units or AUs*), open lot feedlots in southeastern Minnesota.
This project will plan, implement, and report on a community engagement strategy for identifying community/landowner opportunities, obstacles, and opinions on land management and water quality that will result in the identification of Watershed Restoration and Protection Strategies (WRAPS) input for the Sibley, Nicollet, Renville, McLeod, Rice, and LeSueur County areas of the Lower Minnesota River watershed.
The project will plan, implement, and report on a community engagement strategy for identifying community/landowner opportunities, obstacles, and opinions on land management and water quality that will result in the identification of Watershed Restoration and Protection Strategies (WRAPS) input for the Sibley, Nicollet, Renville, McLeod, Rice, and Le Sueur County areas of the Lower Minnesota River watershed.
This project will establish a groundwater monitoring network in the 11 county metropolitan area. The network will provide information about aquifer characteristics and natural water trends by monitoring healthy aquifers (non-stressed systems). The project will also develop an automated system that captures groundwater level and water use data. This system will enhance evaluation of changes in aquifers that are stressed by pumping from existing wells.
The purpose of this monitoring project is to maintain water quality data collection, build upon existing data for Phase II of the Intensive Watershed Monitoring approach, and develop a better understanding of what impacts the rivers located in central Minnesota specifically in the North Fork Crow Watershed.
The goal of this project is to complete the construction, calibration, and validation of a Hydrological Simulation Program – FORTRAN (HSPF) watershed model for a portion of the Mississippi River-Lake Pepin watershed.
Minnesota Erosion Control Association (MECA) will offer three one-day training session intended to educate permittees on the requirements of the Municipal Separate Storm Sewer System (MS4) permit. The focus of these workshops will be on conducting inspections and various hot topics.
This contract will be to initiate the second cycle of the North Fork Crow River Watershed Restoration and Protection Strategies (WRAPS) development. The project will provide needed information and analysis to make sure that implementation strategies are well thought out and targeted. The result will be a framework for civic and citizen engagement and communication, which will contribute to long-term public participation in surface water protection and restoration activities throughout the watershed.
The goal of this project is to refine the nutrient and algae simulation in the Minnesota River basin using all relevant available sources of information. The outcome of this work order is a revised Hydrological Simulation Program – FORTRAN (HSPF) watershed model application for the Minnesota River basin that correctly represents nutrient sources and algae.
This project will determine the condition of the water bodies in the Otter Tail River watershed, initiate public participation in the Watershed Restoration and Protection Strategy (WRAPS) development process, begin identification of potential stressors and priority management areas within the watershed, and begin development of initial drafts of the Total Maximum Daily Load (TMDL) study and WRAPS report.
The goal of this project is to complete the construction, calibration, and validation of a Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Otter Tail River watershed. The contractor will produce an HSPF model that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) Studies. The model will generate predicted output for hydrology, sediment, nutrients, and dissolved oxygen that is consistent with observed data.
The goal of this project is to better target restoration activities in the Cannon River watershed via a paleolimnological study of a selected set of the lakes addressed in the Total Maximum Daily Load (TMDL) for the watershed. The goals are to better constrain lake phosphorus budgets, and determine the magnitude of ecological change experienced by a range of lake types.
This project will result in the development of three critical pieces of information. They include: 1. Development of restoration and protection strategies for all waterbodies in the district relative to the State's Non-point Source Funding plan 2. Use of PTMApp to tie the WRAPs implementation tables from the Buffalo and Red River Watersheds to targeted on-the-ground projects and practices that will provide measurable water quality improvements, and 3.
The goal of this project is to extend, calibrate, and validate the existing Hydrological Simulation Program – FORTRAN (HSPF) watershed models in the Red Lake River, Thief River, Clearwater River and Red Lake watersheds.
Approximately 70 percent of all Minnesotans rely on groundwater as their primary source of drinking water. Wells used for drinking water must be properly sealed when removed from service to protect both public health and Minnesota’s invaluable groundwater resources. The Minnesota Department of Health with the assistance of the Board of Water and Soil Resources protects both public health and groundwater by assuring the proper sealing of unused wells.” Clean Water funds are being provided to home owners as a 50% cost-share assistance for sealing unused private drinking water wells.
The primary goal of this project is to examine the calibration and validation of recently extended Hydrological Simulation Program – FORTRAN (HSPF) watershed models for the Mississippi River-Headwaters, Mississippi River-Grand Rapids, Mississippi River-Brainerd, Mississippi River-Sartell, Mississippi River-St. Cloud, Leech Lake, Pine River, Crow Wing River, Long Prairie River, and Redeye River watersheds and revise the calibration.
This goal of this project is the completion of a Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Upper Red River watershed in the Red River Basin. This includes the construction, calibration, and validation of the model for hydrology and water quality parameters.
This is a joint project between the United States Geological Survey (USGS), Minnesota Pollution Control Agency (MPCA), North Dakota, and Manitoba. The project is a basin-wide, up-to-date water quality trend analysis using the "QWTrend" program for approximately 40 bi-national river sites to review nutrients, total suspended solids, total dissolved solids, sulfate and chloride from 1980 - 2015.
The goal of this project is to test the sensitivity of the Zumbro River Watershed Hydrological Simulation Program FORTRAN (HSPF) model management scenario results. Additional goals are to develop Total Maximum Daily Loads (TMDLs) for impaired stream reaches and Rice Lake, which will be documented in a TMDL Report. The consultant will apply the existing calibrated and validated Zumbro River Watershed HSPF model to construct load duration curves to develop TMDLs.