The Zumbro River Watershed Pollutant Load Monitoring Network (WPLMN) project will continue existing efforts to calculate seasonal pollutant loads for the Root River. The Zumbro Watershed Partnership (ZWP) along with Olmsted County Environmental Services will assist the Minnesota Pollution Control Agency (MPCA) with water quality monitoring and pollutant load calculations of four sub-watershed sites. Approximately 50 grab samples per site (total of 200) between ice-out and October 31 of 2016 and 2017 will be collected along with field measurements and observations.
This project will result in the final the Bois de Sioux River Watershed Restoration and Protection Strategies (WRAPS) report and Total Maximum Daily Load (TMDL) study. This work order will authorize the consultant to address all comments received during the public notice period and produce the final WRAPS report for the Minnesota Pollution Control Agency's final approval and a final TMDL study for United States Environmental Protection Agency's (EPA) final approval.
This is the second phase of building the Hydrologic Simulation Program FORTRAN (HSPF) model for the Buffalo River watershed. The project will result in a completed model including necessary calibration and validation phases.
The goal of this project is to address public comments on the public noticed draft Watershed Restoration & Protection Strategy (WRAPS) study and Total Maximum Daily Load (TMDL) report for the watershed, and to produce a final draft WRAPS study and TMDL report ready for final approval by the United States Environmental Protection Agency (USEPA) and Minnesota Pollution Control Agency (MPCA).
The purpose of this project is to create a shared plan for the Watershed Restoration and Protection Strategy (WRAPS) process with roles, responsibilities, commitments and deliverables clearly understood by all (Minnesota Pollution Control Agency (MPCA), Chippewa River Watershed, and local partners). The MPCA and the Chippewa River Watershed Project (CRWP) will be working together to ascertain the level of involvement that local units of government and other partners want to engage in for the second round of the WRAPS process.
This project will produce a final Total Maximum Daily Load (TMDL) study and Watershed Restoration and Protection Strategy (WRAPS) report that will be utilized by local government units for water planning purposes during the Board of Water and Soil Resources One Water One Plan process for the Clearwater River Watershed.
The overall goal is to develop a Watershed Restoration and Protection Strategy (WRAPS) Report and Total Maximum Daily Load (TMDL) Study that will address water quality impairments and maintain or improve water quality throughout the Clearwater River watershed. The study will identify sources of pollutants to the streams and lakes, allocate pollution reduction goals, and prioritize and identify implementation strategies to maintain or improve water quality in key lakes and streams in the watershed.
This project will conduct water quality monitoring at 12 stream sampling sites. The sites will be monitored for chemical, physical, and bacteriological parameters over a two year time-period. The Headwaters Science Center (HSC) will be the lead agency and arrange volunteer cooperation from Trek North, Bemidji, Perham and/or Detroit Lakes High School students and their instructors. The HSC project lead will be responsible for oversight and full compliance to MPCA protocols.
This project is to finalize the Total Maximum Daily Loads (TMDLs) and Watershed Restoration & Protection Strategies (WRAPS) for the Red Eye and Long Prairie Watersheds.
The goal of this project is to extend existing Hydrologic Simulation Program FORTRAN (HSPF) models through 2017 for the following major watersheds: Redwood, Cottonwood, Watonwan, Blue Earth, Le Sueur, Pomme de Terre, Minnesota River-Headwaters, and Lac Qui Parle watersheds.
The goal of this project is to simulate up to ten scenarios using the recently completed Hydrologic Simulation Program FORTRAN (HSPF) model for the Mississippi River–Lake Pepin (MRLP) watershed. The mode will be used to investigate a variety of management scenarios to support further planning work and implementation in the watershed. Model scenarios are being developed to inform 1W1P planning activities and future implementation.
This project will address United States Environmental Protection Agency (USEPA) comments on the Preliminary Draft Total Maximum Daily Load (TMDL) study and Minnesota Pollution Control Agency (MPCA) comments on the pre-public notice draft Watershed Restoration & Protection Strategy (WRAPS) report, and produce Public Notice Draft TMDL study and Public Notice Draft WRAPS report ready for public review and comment.
The goals of project are to: 1) engage stakeholders and the public in watershed management activities; 2) conduct microbial source tracking to determine the source(s) of E.
The goal of this project is to construct, calibrate, and validate a Hydrologic Simulation Program FORTRAN (HSPF) watershed model for the Otter Tail watershed. The contractor will produce a HSPF watershed model application(s) that can readily be used to provide information to support conventional parameter Total Maximum Daily Loads (TMDLs). The contractor will clearly demonstrate that this model generates predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen that are consistent with available sets of observed data.
Wood Environment & Infrastructure Solutions, Inc. (Wood) was selected for this project to conduct work in support of the per- and polyfluoroalkyl substances (PFAS) program. This project is a multi-phased pilot study to further validate and refine potential locations across Minnesota that may have historically been, or are currently, contaminated with PFAS. The primary objective is to evaluate potential PFAS locations, specifically compost sites, to determine presence or absence of PFAS at each site.
This project will develop the Pomme de Terre Watershed Total Maximum Daily Load (TMDL) study for the second round of the 10-year watershed approach cycle in the Pomme de Terre watershed. This phase of the project will address 4 stream impairments and 3 lake impairments and produce a draft TMDL document. A second phase may be needed as the stressor ID report identifies more stream reaches with TMDL relevant stressors.
The goal is to facilitate strategic networking, learning, and participation of targeted groups to assess, build, and leverage community capacity (i.e. community resources and values) to become aware of water quality issues and increase best management practice adoption to restore and protect water quality in the Pomme de Terre River watershed. This goal will benefit the completion of the second cycle of the watershed approach by providing useful information important in the completion of Watershed Restoration and Protection Strategies (WRAPS) report.
This project is for Minnesota Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, to work with regional partners to promote understanding and protection of watersheds, and to organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
This project is for Minnesota Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, to work with regional partners to promote understanding and protection of watersheds, and to organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
The International Water Institute (IWI) will monitor 42 sites (3 basin, 12 major watershed, and 27 subwatershed) in the Red River and Upper Mississippi River Basins intensively during the contract period. There will also be 5 sites in the Red River Basin where mercury samples will be collected and sent to Minnesota Department of Health for analysis. The IWI will collect water samples across the range of flow conditions targeting sample collection at times of moderate to high flow.
The purpose of this project is to improve understanding of primary productivity in the Red River and the diversity and population structure of the algal communities occurring along the river system. This will be accomplished through taxonomic identification of periphyton and phytoplankton assemblages necessary for characterizing responses to nutrient gradients along the Red River of the North.
The purpose of this project is to assess the amount of land in the Root River watershed that is treated by structural best management practices (BMPs); more specifically, Water and Sediment Control Basins. The 2016 Root River Watershed Restoration and Protection Strategy (WRAPS) report recommended reducing sediment loss from upland areas and reducing nitrate loading to streams from runoff. Understanding the location and density of these BMPs will is important for targeting future watershed protection and restoration efforts.
The purpose of this effort is to create an educational video that will “bring to life” geo-scientific information related to groundwater movement in southeast Minnesota. This video will be used by the Minnesota Pollution Control Agency (MPCA), Minnesota Department of Agriculture (MDA) and other regional partners to help explain the local geology and related groundwater movement. It is anticipated that the video will be used at meetings and other events related to water resource management and natural resource issues. In addition, three stand alone high resolution graphics will be created.
This project will extend the simulation period for the Hydrological Simulation Program - FORTRAN (HSPF) models for the Grand Rapids, Brainerd, Crow Wing, Redeye, Long Prairie, Sartell, Sauk, St. Cloud, and Crow watersheds, and review and comment on the calibration.
In previous phases of work, a Hydrologic Simulation Program FORTRAN (HSPF) model of the Zumbro River Watershed was developed to simulate hydrology and water quality for the 1995-2009 simulation period (Phase I), applied to evaluate various management scenarios for reducing sediment and nutrient loading (Phase II), and used to develop Total Maximum Daily Loads (TMDLs) for impaired stream segments and inform development of a nutrient TMDL for Rice Lake (Phase III).
2019: The Olmsted County Soil and Water Conservation District will assist the Minnesota Pollution Control Agency (MPCA) with water quality monitoring and pollutant load calculations at four sub-watershed sites in the Zumbro River Watershed. Approximately 25 grab samples per site between ice-out and October 31 of 2019 will be collected along with field measurements and observations.