The goal of the project is the development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL.
MSU-Mankato Water Resources Center in the Mankato area will provide conventional pollutant monitoring at the following sites: Beauford Ditch, Big Cobb River, Blue Earth River, Le Sueur River (3), Little Cobb River, Minnesota River (2), Watonwan River.
The goal of this project is to collect data, water chemistry and field parameters, which will be paired with biological data collected by the MPCA to assess water quality conditions at seven sites along targeted reaches within the Snake River Watershed and five sites in the Two River Watershed.
This project will support the monitoring of two sites on the Cannon River throughout the field seasons of 2013 and 2014 during storm events and baseflow conditions to capture 25 samples per year at each site according to the WPLMN objectives. The information gathered from these samples and site visits will be compiled for reporting purposes and for use in calculating pollutant loading using the FLUX32 model.
This project will work with the MPCA to conduct watershed pollutant load monitoring at four sites in the Chippewa River watershed and one site in the neighboring Pomme de Terre River watershed . The Chippewa River Watershed Project (CRWP) team will also aid the MPCA in measuring and comparing regional differences and long-term trends in water quality. The goal is to collect quality data and complete load calculations for the five sites using the MPCA's established protocols.
This project goal is to conduct water chemistry monitoring at seventeen stream locations, to record and submit all data collected through this process, and to provide the information necessary for the calculation of water quality pollutant loads using the FLUX32 program.
This project will use the We Are Water MN traveling exhibit and the Minnesota Humanities Center's approach to community engagement, relationship building, and storytelling, to increase community capacity for sustainable watershed management in six Minnesota watersheds.
This project will use the We Are Water MN traveling exhibit and the Minnesota Humanities Center's approach to community engagement, relationship building, and storytelling, to increase community capacity for sustainable watershed management in five Minnesota watersheds. The following communities were selected as host sites for this project:
Winona (City of Winona), active hosting period: March 3-April 25, 2022
Lake City (Lake Pepin Legacy Alliance), active hosting period: April 28-June 20, 2022
The goal of this project is to facilitate strategic networking, relationships, and learning in targeted groups to assess, build, and leverage community capacity (i.e. community resources and values) to increase knowledge of the Blue Earth River watershed’s water resources and increase best management practice (BMP) adoption to restore and protect water quality in the Blue Earth River watershed. Additional goals include providing information that is readily available to the general public for updates on Watershed Approach work in the Blue Earth River watershed.
The goal of this project is to develop and write the Watershed Restoration and Protection Strategy (WRAPS) report for the Blue Earth River Watershed to provide restoration strategies to improve water quality for impaired waters and protection strategies to maintain the quality of water for water bodies meeting standards.
The Blue Earth SWCD will be monitoring 7 stream sites located in the Le Sueur River Watershed. The stream sites will be monitored at the road crossing locations via bridge, culvert or shore. Onsite conditions will be recorded, water sample readings will be taken for Secchi tube, specific conductance, temperature, pH, DO, and photos taken.
This project will utilize a systematic approach to identify principal sources, or “hot-spots”, of sediment contributions and work with individual landowners, county drainage officials, and municipalities to coordinate and implement critical Best Management Practices (BMP’s), establish demonstration sites, and provide education and outreach efforts. This project will also establish baseline watershed data with the addition of site specific information, and determine high priority watersheds. Appropriate practices will be identified and mapped utilizing GPS and GIS equipment and software.
The goal is to facilitate strategic networking, learning, and implementation in targeted groups to assess, build, and leverage community capacity (i.e. community resources and values) to increase best management practice (BMP) adoption to restore and protect water quality in the Blue Earth River watershed
The United States Environmental Protection Agency (USEPA) requires the Minnesota Pollution Control Agency (MPCA) to carry out the Total Maximum Daily Load Program (TMDL) in the state of Minnesota. Minnesota has an abundance of lakes and river reaches, many of which will require a TMDL study. In an effort to expedite the completion of TMDL projects, the MPCA has decided to construct watershed models. These models have the potential to support the simultaneous development of TMDL studies for multiple listings within a cataloging unit or 8-digit Hydrologic Unit Code watershed.
This project involves the extension and update of the Hydrological Simulation Program FORTRAN (HSPF) model for the Bois de Sioux and Mustinka watersheds.
This project will develop a watershed approach plan, including impaired waters allocations, for the Mustinka Watershed, located at the headwaters of the Red River of the North, in western Minnesota, lying partly in Grant, Stevens, Ottertail, Big Stone, and Traverse counties. The watershed approach plan will set water quality goals for the watershed, recommend allocations for achieving total maximum daily loads where waters do not meet state standards and are listed as impaired.
This project is to refresh the Cannon River Watershed Hydrologic Simulation Program FORTRAN (HSPF) model. The previous model was developed for the time period of 1995-2012. This phase will extend the model to include data through 2019. All time series data will be updated through 2019, land classification zones will be restructured, hydrology calibration will be updated as needed, and final reporting including technical memo and model package.
The goal of this project is to use a science-based and participatory approach to understanding and promoting conservation practices in the agricultural community.
Complete section 3 of Watershed Restoration and Protection Strategy (WRAPS) document for the Cannon and Zumbro Watersheds and provide input to sections 1 and 2.
This project will directly inform the Lake of the Woods (LoW )TMDL process by identifying nutrient reduction targets, a timeline of phosphorus loadings to the lake, and measures of historical in-lake variability (e.g., nutrients, biological communities). Results will complement and build on ongoing research efforts on internal loading and sediment core analysis.
This project will support the collection and analysis of sediment core samples, from each of the five bays ( Little Traverse, Big Traverse, Muskeg, Sabaskong and 4-Mile Bays), to ensure adequate characterization of the P fluxes from deposited sediment and equilibrium P fluxes from re-suspended sediment.
This project will support a civic engagement cohort that will be offered in southwest Minnesota to foster partnering and build capacity of local government, organizations, and residents for effective civic engagement in water protection and restoration. This project will also build networks and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection. The cohort will be administered through the Minnesota River Board (MRB), established in 1995 with a goal of focusing water management efforts on the local level.
This project will develop an understanding for how sediment sources change over timescales of individual storm events as well as over the past two centuries. The results will be used by the larger Collaborative for Sediment Source Reduction (CISSR)-Blue Earth research group to establish a sediment budget for the Greater Blue Earth River Basin and understand the effectiveness of various potential mitigation strategies. In addition, these results can be used by MPCA and others to calibrate watershed sediment models.
This project will build network and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection in Southeast Minnesota. The cohort will be administered through the Southeast Minnesota Water Resources Board (SE MN WRB) which is an area wide Joint Powers Board (JPB) established to help improve and protect the water resources of the area through coordinating local water planning efforts. This JPB has successfully administered water quality grants in the past that have positively impacted the water resources of this region.
This project will complete spatial and temporal revisions , recalibration and validation of 7 watershed HSPF models. These fully functioning calibrated validated executable models will simulate hydrology, sediment (sand, silt, and clay), temperature, phosphorus, nitrogen, dissolved oxygen, biochemical oxygen demand, and algae at the 12-digit HUC subbasin scale (or finer).
This project will construct, calibrate, a set of HSPF watershed models covering the entire area of the Lake of the Woods drainage, including the Rainy River watershed. The consultant will produce HSPF models that can readily be used to provide information to support conventional parameter TMDLs. The consultant will clearly demonstrate that these models generate predicted output timeseries for hydrology which are consistent with available sets of observed data.
This project will construct, calibrate, and validate an HSPF watershed model for the Lake of the Woods River watershed. The consultants will produce HSPF watershed models that can readily be used to provide information to support conventional parameter TMDLs. The consultants will clearly demonstrate that the models generate predicted output time series for hydrology, sediment, nutrients, and dissolved oxygen that are consistent with available sets of observed data.
This project will continue the offering of low-interest loans to citizens, some of whom may not be able to acquire funding otherwise, for upgrading 50 septic systems to ensure compliance with state rules. Grant funds will be used to administer the low-interest loan program.
This project will allow for outreach programs to engage interested citizens in protecting 200 acres of riparian buffer in the headwaters of the watershed, accounting for 1860 tons of sediment prevented from reaching surface waters each year the practices remain in place. The desired outcome would include 30 or more participants in the program, and to develop a more extensive volunteer base.
River Watch (RW) enhances watershed understanding and awareness for tomorrow’s decision-makers through direct hands-on, field-based experiential watershed science. High School based teams throughout the Minnesota River Basin participate in a variety of unique and innovative watershed engagement opportunities such as Water Quality Monitoring and Macroinvertebrate surveys that are suited to their school, community, and watershed needs.
BWSR will administer funding to eligible County projects that provide funds and other assistance to low income property owners to upgrade or replace Noncompliant Septic Systems. BWSR will also manage annual reporting completed by each County.
This project will maximize the utility and usefulness of three HSPF models that have been constructed and calibrated for hydrology. The contractor will identify and reduce parameterization errors in the following three HSPF models: 1) Buffalo River Watershed, 2 ) Thief River Watershed, 3) Bois de Sioux-Mustinka Watersheds. This will result, not only in a better hydrology calibration, but will also improve each of the models’ ability to more accurately estimate sediment and pollutant loads and concentrations.
The goal of this project is to construct, calibrate, and validate a watershed model using Hydrologic Simulation Program FORTRAN (HSPF). The project will result in a HSPF model that can readily be used to provide information to support conventional parameter TMDLs.
This project involves the water quality monitoring of, and data analysis for four major watersheds (8-digit Hydrologic Unit Codes) in the Rainy River Basin. This monitoring will assist in providing the water chemistry data needed to calculate annual pollutant loads for the Major Watershed Pollutant Load Monitoring Network (MWPLMN) and provide short term data sets of select parameters to other Agency programs.
The purpose of this project is to develop a framework to implement best management practices (BMPs) on ditches in headwater areas utilizing a partnership between drainage staff and the Greater Blue Earth River Basin Alliance (GBERBA). By replacing failing side-inlets with an alternative design, we can make strides towards our water quality and water quantity goals. The alternative inlets serve to prevent sediment and phosphorus from washing downstream and the design can also alleviate peak flows by temporarily storing stormwater.
Provide education, outreach and civic engagement necessary for the development of structural and non-structural best management practices needed to improve water quality within the Greater Blue Earth River Basin. General Education will have a regional focus to landowners. Outreach effort will be focused on regional officials, staff and landowners. Civic engagement efforts will have a smaller watershed scale focus with efforts resulting in structural BMPs being placed on the land and non-structural BMPs being adopted. Implementation of structural best management practices on the land.
The goal of this project is to complete the calibration/validation process of Hydrologic Simulation FORTRAN (HSPF) watershed models for the Lake of the Woods/Rainy River Basin.
This project will complete the development of two watershed HSPF models for the Mustinka River and Bois de Sioux River watersheds. These calibrated and validated executable models will simulate hydrology at the 12-digit HUC subbasin scale.