The funds requested will provide Big Lake Township with the technical and financial assistance necessary to retrofit up to six locations for stormwater treatment practices within the direct drainage area of Birch Lake, an impaired water body which is very close to meeting state standards. The projects have been identified as high priority in several water quality plans including a TMDL, a subwatershed assessment, the County Water Plan and the Mississippi River (St. Cloud) WRAPS.
The Chippewa River Watershed Project (CRWP) will work with the Minnesot Pollution Control Agency (MPCA) to conduct watershed pollutant load monitoring at four sites in the Chippewa River watershed and one site in the neighboring Pomme de Terre River watershed to aid the MPCA in measuring and comparing regional differences and long-term trends in water quality. Our goal is to collect quality data and complete load calculations for five sites using the MPCA's Watershed Pollutant Load Monitoring Network (WPLMN) established protocols.
The Minnesota DNR and the Minnesota Forest Resources Council work with forest landowners, managers and loggers to implement a set of voluntary sustainable forest management guidelines that include water quality best management practices (BMPs) to ensure sustainable habitat, clean water, and productive forest soils, all contributing to healthy watersheds. This project will monitor the implementation of these forest management guidelines and BMPs on forested watersheds in MN.
The goal of the High Island Creek Watershed Pollutant Load Monitoring project is to assist the Minnesota Pollution Control Agency (MPCA) with meeting the objectives of the Watershed Pollutant Load Monitoring Network (WPLMN). This will be accomplished by providing staff support throughout fiscal years 2016 and 2017 to conduct water chemistry monitoring at two specified stream locations from ice out through October 31 capturing snow melt, rainfall events and base flow conditions.
The goal of this project is to refine the segmentation, extend the simulation period, and recalibrate an existing Hydrologic Simulation Program FORTRAN (HSPF) watershed model for the Rum River Watershed.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.
This project will establish a groundwater monitoring network in the 11 county metropolitan area. The network will provide information about aquifer characteristics and natural water trends by monitoring healthy aquifers (non-stressed systems). The project will also develop an automated system that captures groundwater level and water use data. This system will enhance evaluation of changes in aquifers that are stressed by pumping from existing wells.
The goal of this project is to develop a Watershed Restoration and Protection Plan (WRAPS) to be used at the local level. It will increase the number of citizens participating in education and outreach events; foster information and idea exchange around watershed issues through relationships and social networks; involve community members in crafting civic engagement activities/plans in which they feel ownership and desire to implement; and promote awareness, concern, and watershed stewardship to community organizations/institutions.
The project goal is to conduct water chemistry monitoring at three subwatershed sites in 2016-2019 and ongoing as needed in based on flow conditions, targeting runoff events using protocols defined in the Watershed Pollutant Load Monitoring Network (WPLMN) Standard Operating Procedures and Guidance. The data collected will be submitted to the Minnesota Pollution Control Agency (MPCA) and used in the FLUX32 model for calculating pollutant loads.
This project will address United States Environmental Protection Agency (USEPA) comments on the Preliminary Draft Total Maximum Daily Load (TMDL) study and Minnesota Pollution Control Agency (MPCA) comments on the pre-public notice draft Watershed Restoration & Protection Strategy (WRAPS) report, and produce Public Notice Draft TMDL study and Public Notice Draft WRAPS report ready for public review and comment.
The goal of the Pomme de Terre River Association (PDTRA JPB) is to improve the local water resources within the watershed through targeted voluntary efforts and the building of strong relationships with local landowners, producers, and citizens. To further our efforts in strategically working to achieve our reduction goals, listed in our Major Watershed Restoration and Protection Strategies Report and Turbidity Total Maximum Daily Load report, we would like to further define our Priority Management Zones through the development of a hydrological conditioned Digital Elevation Model.
This project is for Minnesota Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, to work with regional partners to promote understanding and protection of watersheds, and to organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
The purpose of this project is to improve understanding of primary productivity in the Red River and the diversity and population structure of the algal communities occurring along the river system. This will be accomplished through taxonomic identification of periphyton and phytoplankton assemblages necessary for characterizing responses to nutrient gradients along the Red River of the North.
This project will focus on Watershed Restoration and Protetion Strategy (WRAPS) and Total Maximum Daily Load (TMDL) report development for the Rum River Watershed, which includes Mille Lacs Lake (the second largest lake in Minnesota) and the Rum River of which Mille Lacs Lake is the headwaters. The project will produce a plan that partners and citizens will be able to implement, a framework for citizen engagement, and a set of watershed management activities that will achieve water quality standards for all impairments within the watershed.
Approximately 70 percent of all Minnesotans rely on groundwater as their primary source of drinking water. Wells used for drinking water must be properly sealed when removed from service to protect both public health and Minnesota’s invaluable groundwater resources. The Minnesota Department of Health protects both public health and groundwater by assuring the proper sealing of unused wells.
Clean Water funds are being provided to well owners as a 50% cost-share assistance for sealing unused public water-supply wells.
This project will develop Total Maximum Daily Load (TMDL) allocations and complete a final draft TMDL report for the five lake impairments listed for the South Fork Crow River Watershed.
The lack of sewage treatment in many small communities in Southeast Minnesota is causing surface water and groundwater pollution. Fourteen of these small communities will receive technical assistance provided by this project. These communities have community or individual straight pipes which are discharging raw sewage directly to the environment, surfacing sewage, or have sewage contaminating groundwater.
To be able to manage resources in the Blue Earth and Le Sueur Watersheds into the future and have a positive effect on water quality, resource managers need high quality accurate data to support decision making of best management practice (BMP) implementation. Digital elevation data is a valuable resource for modeling water flow, however in its current state it cannot represent water conveyance through features such as roadways. These flow barriers limit the accurate use of data for recently developed targeting tools identifying BMP suitability and effectiveness down to the field scale.
This project will extend the simulation period for the Hydrological Simulation Program - FORTRAN (HSPF) models for the Grand Rapids, Brainerd, Crow Wing, Redeye, Long Prairie, Sartell, Sauk, St. Cloud, and Crow watersheds, and review and comment on the calibration.
This project will extend, calibrate, and validate watershed models using the Hydrological Simulation Program - FORTRAN (HSPF) watershed model for the Mississippi Headwaters, Leech Lake, Pine, and South Fork Crow Watersheds.