This project will provide support for the 10th Annual Road Salt Symposium at the Minnesota Landscape Arboretum. The symposium brings together environmental organizations, companies that produce winter road de-icing salts and chemicals, scientists, policy-makers and transportation workers. They Symposium provides information on chlorides in our waters and provides innovative and new approaches to help repair our waters and sustain our resources for future generations.
The goal of the project is the development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL.
MSU-Mankato Water Resources Center in the Mankato area will provide conventional pollutant monitoring at the following sites: Beauford Ditch, Big Cobb River, Blue Earth River, Le Sueur River (3), Little Cobb River, Minnesota River (2), Watonwan River.
This project will monitor six sites within the Minnesota River Basin: Hawk Creek near Maynard, Hawk Creek near Granite Falls, Beaver Creek near Beaver Falls, Yellow Medicine River near Granite Falls, Yellow Medicine River near Hanley Falls, and Spring Creek near Hanley Falls. The sites will be monitored according to MPCA’s Major Watershed Load Monitoring (WPLMN) Standard Operating Procedure, which is the procedure being followed for sites currently monitored by the Hawk Creek Watershed Project (HCWP).
The goal of this project is to perform water quality monitoring and load calculation duties to accomplish MPCA's Watershed Pollutant Load Monitoring Network monitoring efforts at seven sites for the Redwood and Cottonwood River watersheds as well as the Minnesota River site near Morton.
This project goal is to conduct water chemistry monitoring at seventeen stream locations, to record and submit all data collected through this process, and to provide the information necessary for the calculation of water quality pollutant loads using the FLUX32 program.
Contractor assistance with site selection, reconnaissance and obtaining access for installation of ambient groundwater monitoring wells in Ramsey county and Hennepin county. This project will provide services and oversight of the installation for up to 16 well sites.
Widseth Smith Nolting (WSN) will evaluate and recommend to MPCA groundwater monitoring staff prospective sites/locations for the installation of groundwater monitoring wells to evaluate contaminant/pollutant concentrations from various sources. Peer will oversee the installation of monitoring wells by retaining a state drilling contractor or preparing bid documents to retain well driller through the Department of Administration. Superfund staff will assist in the project by providing oversight of contractual requirements and provide technical assistance as needed.
Widseth Smith Nolting (WSN) will evaluate and recommend to Minnesota Pollution Control Agency (MPCA) groundwater monitoring staff prospective sites/locations for the installation of groundwater monitoring wells to evaluate contaminant/pollutant concentrations from various sources. Peer will oversee the installation of monitoring wells by retaining a state drilling contractor or preparing bid documents to retain well driller through the Department of Administration.
Contractor assistance with site selection, reconnaissance and obtaining access for installation of ambient groundwater monitoring wells in Minnesota. This project will provide services for up to 25 well sites.
Contractor assistance with site selection, reconnaissance and obtaining access for installation of ambient groundwater monitoring wells in northcentral and northeastern Minnesota. This project will provide services and oversight of the installation for up to 31 well sites.
The goal of this project is to develop a stream restoration opportunities matrix for the Amity Creek watershed, which will prioritize the various protection and restoration options in the watershed for the Minnesota Pollution Control Agency (MPCA) and local partners.
This project will use the We Are Water MN traveling exhibit and the Minnesota Humanities Center's approach to community engagement, relationship building, and storytelling, to increase community capacity for sustainable watershed management in six Minnesota watersheds.
This project will use the We Are Water MN traveling exhibit and the Minnesota Humanities Center's approach to community engagement, relationship building, and storytelling, to increase community capacity for sustainable watershed management in five Minnesota watersheds. The following communities were selected as host sites for this project:
Winona (City of Winona), active hosting period: March 3-April 25, 2022
Lake City (Lake Pepin Legacy Alliance), active hosting period: April 28-June 20, 2022
This project is a continuation of Statewide Lake study that revealed the obiquitous presence of endrocrine active compounds (EACs) in many MN Lakes. The initial project findings suggested two potential knowledge gaps in our understanding of EACs and their effects in lake environments. First, the sources of EACs and their entrance points into lakes need to be better defined than was possible in our previous statewide lake study.
Minnesota is currently revising its state-level Nutrient Reduction Strategy (NRS), which was originally completed in 2014. Since 2014, all watersheds in the state have completed Watershed Restoration and Protection Strategies (WRAPS). These technical strategies and reports have been used thus far by over two thirds of watersheds when developing comprehensive local water plans known as “One Watershed, One Plan” (1W1P).
This project will promulgate a nitrate water quality standard to address aquatic life toxicity, and gather information needed to support the development of total nitrogen (N) loading reduction strategies for Minnesota’s waters and also address Minnesota’s contribution to marine water hypoxia. Project will also develop a framework for a watershed nitrogen planning aid that can be used to optimize selection of Best Management Practice (BMP) systems for reducing nitrogen.
This project will complete a Total Maximum Daily Load Implementation Plan for the watersheds of Big Sandy and Minnewawa Lakes. This restoration plan will provide pollution reduction and watershed management strategies that are developed with input from stakeholders in the watersheds.
The goal of this project is to develop statewide biological criteria for managing the state’s water resources, in keeping with the federal Clean Water Act. The MPCA is using the Biological Condition Gradient (BCG) for this development. The BCG is a conceptual model that describes changes in aquatic ecosystems on a gradient of increasing anthropogenic stress.
The purpose of this project is to provide stream and large river macro invertebrate sample processing and identification for the Minnesota Pollution Control agency (MPCA) Biological Monitoring Unit.
The final product will consist of; data submitted electronically to the MPCA, project reference specification, return of all identified specimens, and an external and internal QA/QC report.
This project will assess the efficiency of membrane bioreactor treatment to remove contaminants of emerging concern from wastewater, disinfect wastewater, and produce less toxic waste stream to fish. The study will analyze and interpret 40 effluent samples.
The goal of this project is to develop and complete the Watershed Restoration and Protection (WRAP) process and report, while also enlarging and sustaining a public participation process that encourages local ownership of water quality problems and solutions (civic engagement).
This monitoring project includes lake and stream monitoring and encompasses all of Cass County, and surrounding counties. The project will obtain water quality data for streams; in 2009, lakeshed assessments indicated that many surface waters throughout the county were data deficient. This project will address the need for sufficient data on a county-wide basis and fulfill the State’s intensive watershed monitoring program goals by obtaining water quality data at targeted lake and stream sites.
This project will create a new chloride source assessment model and generate the best management practice (BMP) information and needed water softening data for the Smart Salting Assessment tool, which will allow Minnesota communities to fully evaluate their specific sources and magnitude of chloride and develop a community specific chloride reduction plan.
Fortin Consulting will develop a strategy to identify, prioritize, educate, and provide assistance to appropriate local businesses or industries within three communities experiencing elevated chloride in surface waters or in wastewater discharge to upgrade, optimize, or replace their existing water softening systems to a system that will decrease salt use and reduce chloride pollution entering local water resources.
This project will result in the development of tools and resources to develop community specific chloride reduction/minimization plans and a better understanding of the sources (and relative contributions) of chloride at a community-scale level or geographic area.
This study will test groundwater and drain tile waters at concentrated animal feedlot opperations (CAFOs) to evaluate the presence of intibiotics and hormones. Samples will be collected from monitoring wells, tile drain sumps, and tile line discharges.
Water samples will be sent to Axys Analytical Services as they are colleced from each monitoring site. A total of 18 samples will be generated in the field by pumping ultrapure water through the sampling system.
Duluth area streams received over 10 inches of rainfall on June 19 and June 20, 2012. This "500 year event" provides a once in a lifetime opportunity to further understand sediment movement and stream channel alterations due to an event of this magnitude.
This project is to assist the Minnesota Pollution Control Agency in developing a robust inter-agency communications action plan and strategy for the Clean Water Fund. The goal of the project is to provide specific recommendations of how to best communicate to key stakeholders and the general public about statewide outcomes and outputs of clean water projects funded by dedicated sales tax revenue.
This project is to develop a watershed restoration and protection strategies report that provides quantitative pollutant source estimates and a set of pollutant reduction and watershed management strategies to protect and achieve water quality standards for all aquatic life and aquatic recreation impairments in the watershed. The strategies will be understood and adoptable by local units of government and other stakeholders. New understandings and new relationships will inform and lead to eventual environmental improvements.
This project will provide Soil and Water Conservation Districts the opportunity to nominate an individual, business, company, municipality or organization for their concern, cooperation and/or implementation of conservation practices in a community environment. This award recognizes nominees that have excelled in a variety of categories which include: storm water management; land use conservation planning and implementation, and leadership relating to community conservation practices.
This project will consist of a literature and data review and compilation of E. coli information from available sources including but not limited to EQuIS database, Total Maximum Daily Loads (TMDLs), Watershed Restoration and Protection Strategies (WRAPS), One Watershed, One Plan (1W1P), Source Water Plans (MDH), Microbial Source Tracking (MST) data provided by the MPCA, and other relevant sources for bacteria data.
Tetra Tech will gather information for eventual incorporation into the Minnesota Stormwater Manual. The Stormwater Manual is used by stormwater practitioners to make decisions related to stormwater management, such as selecting appropriate Best Management Practices, meeting stormwater regulatory requirements, and determining pollutant and stormwater volume reductions associated with implementation of different stormwater management practices. The goal is to update existing information and provide new information on active construction site erosion prevention and sediment control.
This project will provide notification of the potential for coal tar contamination, establish a storm water pond inventory schedule, and develop best management practices for treating and cleaning up contaminated sediments. The sampling design includes 15 stormwater ponds, 5 each from residential, commercial, and industrial land use areas. Municipalities in the metro area with MS4 permits of stormwater ponds will be contacted to nominate candidate sites for this study. GPS coordinates will be taken at all sampling sites.
The goal of this project is to develop a core team of wastewater professionals and academics engaged in understanding and solving wastewater-related problems in Minnesota, with national relevance. The team will promote the use of new technology, designs and practices to address existing and emerging wastewater treatement challenges, including the treatement of wastewater for reuse and the emergence of new and unregulated contaminants.