Ramsey County SWCD is applying to continue the implementation of its popular and successful well sealing cost-share program to help protect the groundwater, especially in highly vulnerable drinking water supply management areas, by permanently and professionally sealing between 115 and 140 abandoned wells in the county.
This project will improve the water quality of lakes in Ramsey and Washington Counties. This will be accomplished by: 1) installation of filtration basins adjacent to Wakefield Lake to reduce nutrient and sediment pollution, and 2) construction of raingardens on private property that filter stormwater runoff thereby reducing sediment and nutrient pollution to Battle Creek Lake and Kohlman Creek. This project is funded through the Ramsey County and Washington County allocations of the Watershed-Based Funding Pilot Program for the Seven County Metropolitan Area.
This project will conduct a subwatershed feasibility study to identify and prioritize project locations for retrofit of stormwater best management practices. The project will also include installation of the highest priority stormwater improvement practice to reduce nutrient pollution to Goose Lake. This project is funded through the Anoka County and Ramsey County allocations of the Watershed-Based Funding Pilot Program for the Seven County Metropolitan Area.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
These funds will be utilized in cost-share for landowners to install Agricultural Best Management Practices following Little Rock Lake TMDL Implementation Plan. Example of projects include Feedlot Improvements, Waste Storage Facilities, Erosion Control BMPs, Filter Strips and Streambank Stabilizations. An estimated 830 pounds per year of phosphorus and 800 tons of sediment will be reduced annually.
The Rice Creek Watershed District (RCWD) is proposing to improve the water quality of stormwater runoff to Bald Eagle Lake through installation of a new wet pond and iron-enhanced sand filter (IESF) on Ramsey County Ditch #11. In partnership with White Bear Township, this project will remove approximately 43 pounds of phosphorus from runoff annually and builds upon the extensive work undertaken by the RCWD to improve water quality in Bald Eagle Lake.
This project will develop a watershed wide Total Maximum Daily Load (TMDL) study and River Eutrophication Standard (RES) TMDL report for water quality impairments in the Des Moines River basin, which includes the Des Moines River Headwaters, Lower Des Moines River, and East Fork Des Moines River watersheds.
The Minnesota DNR and the Minnesota Forest Resources Council work with forest landowners, managers and loggers to implement a set of voluntary sustainable forest management guidelines that include water quality best management practices (BMPs) to ensure sustainable habitat, clean water, and productive forest soils, all contributing to healthy watersheds. This project will monitor the implementation of these forest management guidelines and BMPs on forested watersheds in MN.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.
The goal of this project is to finalize the Lake Pepin Watershed phosphorus total maximum daily load (TMDL) report by using the existing information and documentation prepared under previous contracts to prepare one TMDL report that addresses the impairments on the mainstem of the Mississippi River. Information developed to date for draft TMDLs on the Minnesota River mainstem will be documented for later use by the Minnesota Pollution Control Agency.
Capitol Region Watershed District and the City of Lauderdale seek to improve water quality and flood control functions of Seminary Pond in Lauderdale. The project partners propose improvements to the pond including: 1) expansion of the pond?s storage area and 2) construction of an iron-enhanced sand filter. These improvements were identified as being the most cost-effective and will remove an estimated additional 2 tons of sediment and 9 pounds of phosphorus annually.
The Rice Creek Watershed District is proposing to improve water quality and habitat in Locke Lake and Lower Rice Creek by stabilizing stream banks and bluffs on Lower Rice Creek, reducing in-stream erosion and sediment delivery to Locke Lake, and improving in-stream habitat complexity for fish and invertebrates. Eleven bank stabilization practices would be installed over a continuous 5,400-foot reach in Lower Rice Creek. The anticipated outcome of this project is the prevention of 2,874 tons per year of sediment, which is 58% of the sediment reduction goals for Lower Rice Creek.
It is critical to train new staff, create modeling protocols for new BMPs, refine and calibrate models, and test ever-advancing modeling applications. The Metro Conservation District?s (MCD) Sub-Watershed Analysis (SWA) program provides these capacity-building services and unites efforts across 11 SWCDs. MCD proposes to analyze an additional 15 subwatersheds. The analyses will identify the location and estimated cost/benefit relationship for BMPs, evolve with new technology, and share discoveries metro-wide.
This project will establish a groundwater monitoring network in the 11 county metropolitan area. The network will provide information about aquifer characteristics and natural water trends by monitoring healthy aquifers (non-stressed systems). The project will also develop an automated system that captures groundwater level and water use data. This system will enhance evaluation of changes in aquifers that are stressed by pumping from existing wells.
The goal of this project is to extend existing Hydrologic Simulation Program FORTRAN (HSPF) models through 2017 for the following major watersheds: Redwood, Cottonwood, Watonwan, Blue Earth, Le Sueur, Pomme de Terre, Minnesota River-Headwaters, and Lac Qui Parle watersheds.
The overall goal of this project is to perform water quality monitoring and load calculation duties to accomplish Minnesota Pollution Control Agency (MPCA) Watershed Pollutant Load Monitoring Network (WPLMN) monitoring efforts at the seven sites within the Redwood and Cottonwood River watersheds as well as the Minnesota River site near Morton. To accomplish this goal the requested funds will provide for technician’s time, mileage, lab costs, supplies, as well as equipment calibration and upkeep.
Approximately 70 percent of all Minnesotans rely on groundwater as their primary source of drinking water. Wells used for drinking water must be properly sealed when removed from service to protect both public health and Minnesota’s invaluable groundwater resources. The Minnesota Department of Health with the assistance of the Board of Water and Soil Resources protects both public health and groundwater by assuring the proper sealing of unused wells.” Clean Water funds are being provided to home owners as a 50% cost-share assistance for sealing unused private drinking water wells.
The purpose of this project is to reduce phosphorus entering South Heron Lake (SHL), which currently does not meet state standards for this water pollutant. Efforts will be focused on Jackson County Judicial Ditch 3 (JD3), which has been petitioned to the HLWD for improvement. JD3 drains 52 percent of the SHL watershed, highlighting its importance in making meaningful progress towards water pollution reduction. The practices include eleven water and sediment control basins and a 10-acre storage and treatment wetland restoration.
The main outcome of the project will be the development of a Total Maximum Daily Load (TMDL) study that address total suspended solids/turbidity impairments of the Mississippi River (Swan River to Crow Wing River). Community outreach to communicate the results and strategies for restoration will also take place during this project.
The main outcome of the project will be development of a Total Maximum Daily Load (TMDL) study that address total suspended solids/turbidity impairments of the Mississippi River (Swan River to Crow Wing River). Community outreach to communicate the results and strategies for restoration will also take place during this project.
This program supports communities as they plan and implement projects that address emerging drinking water supply threats. It supports the exploration cost-effective regional and sub-regional solutions, leverages inter-jurisdictional coordination, and prevents overuse and degradation of groundwater resources.
Activities in this program provide metro communities with:
This proposal will fund technical assistance for nutrient management planning to accelerate water quality improvements with the 12-county West Central Technical Service Area (WCTSA). A needs assessment identified an estimated 156 certified nutrient management plans that will be needed over a 3 year period. Of the 71 SWCD employees in the WCTSA, only 1 SWCD staff member is dedicated to nutrient management planning. To meet technical assistance needs, this grant will fund a Regional Planning Specialist (RPS) to address local resource concerns.