The goal of this project is to continue and finalize Hydrologic Simulation Program FORTRAN (HSPF) watershed model construction and complete the calibration/validation process. The project will add representation of point source discharges to the model, compile flow and water quality data for the purposes of calibration and validation. The end result will be an HSPF watershed model that can readily be used to provide information to support conventional parameter TMDLs.
The goal of this project is to establish data sets to evaluate the Aquatic Recreational Use of Mallard, Sucker, and Ozawindib Lakes in southeastern Clearwater County.
The goal of this project is to complete a two-year data set for physical, bacterial, and water chemistry sampling for the Intensive Watershed Monitoring Plan to aid MPCA’s assessment of the aquatic health of the Mississippi Headwaters(HUC 07010101) Watershed.
Bartlett Lake in Koochiching County is impaired for eutrophication and has already undergone a paleolimnological study. This project will utilize the data and results of paleolimnological study to develop in-lake management strategies that, if implemented, could significantly improve the water quality of Bartlett Lake.
The primary goal of this project is to analyze of dated sediment cores to reconstruct changes in the lake condition over the last 150 years. This will be done using multiple lines of evidence including biogeochemistry, sediment accumulation, and diatom and algal remains as biological indicators.
The Becker Soil and Water Conservation District will collect water chemistry and transparency data at Straight, Two Inlets, Hungry Man, Boot, Bass, Big Basswood, Shell, Big Rush and Bass lakes in the Crow Wing River watershed. District staff will collect a complete data set to be used for the Minnesota Pollution Control Agency's efforts to assess the condition of these lakes, and to prioritize restoration and protection activities in the Crow Wing River Watershed Restoration and Protection Strategy (WRAPS) cycle 2 report.
The purpose of this contract is to expand data collection efforts, public participation efforts, and provide technical assistance in targeted areas of the Big Fork River Watershed for the Watershed Restoration and Protection Strategy (WRAPS) Project. A key aspect of this effort is to develop implementation strategies for targeted areas of the watershed to help state agencies, local governments, and other watershed stakeholders determine how to best proceed with restoring and protecting the watershed.
The goals of this project are to develop and implement a stakeholder and public engagement program, update the Hydrological Simulation Program FORTRAN (HSPF) models for the Big Fork and Little Fork River Watersheds, develop Total Maximum Daily Load (TMDL) studies for impaired waterbodies, remove naturally impaired streams from the impairment list, develop a Watershed Restoration and Protection Strategy (WRAPS) report, and to conduct civic engagement activates necessary to ensure project success.
"This project will meet the following goals: develop, implement, and evaluate the impacts civic engagement outcomes for the Big Fork River Watershed; create a citizen understanding of the Watershed Restoration & Protection Strategy (WRAPS) and Total Maximum Daily Load (TMDL) process and the role citizens and stakeholders can play in attaining water quality restoration and protection; provide opportunities for citizens and stakeholders to assist local partners and state agencies in developing priorities for restoration as well projects to accomplish protection of high quality waters; and
The "Bigfork River Target Watershed Assessment – Lake of the Woods & Koochiching Soil and Water Conservation Districts" Project focuses on collecting water chemistry and field parameters at Bear River, Big Fork River (4 sites), Caldwell Brook and Sturgeon River. The project will support the biological assessments being completed by MPCA staff for this Target Watershed Assessment. This work will also train and develop Koochiching SWCD staff to enable them to continue water quality monitoring in the Rainy River Basin.
The goal of this project is to complete the construction of an Hydrologic Simulation Program FORTRAN (HSPF) watershed model for the Buffalo River watershed. Tetra Tech will produce a HSPF watershed model application(s) that will be fully functioning and ready for calibration as part of Phase 2.
This is the second phase of building the Hydrologic Simulation Program FORTRAN (HSPF) model for the Buffalo River watershed. The project will result in a completed model including necessary calibration and validation phases.
The United States Environmental Protection Agency (USEPA) requires the Minnesota Pollution Control Agency (MPCA) to carry out the Total Maximum Daily Load Program (TMDL) in the state of Minnesota. Minnesota has an abundance of lakes and river reaches, many of which will require a TMDL study. In an effort to expedite the completion of TMDL projects, the MPCA has decided to construct watershed models. These models have the potential to support the simultaneous development of TMDL studies for multiple listings within a cataloging unit or 8-digit Hydrologic Unit Code watershed.
This project will continue to develop, and calibrate/validate the hydrology of an Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Buffalo River watershed. The consultant will add representation of point source discharges to the model. The consultant will compile flow data for the purposes of calibration and validation. An initial hydrologic calibration will be performed and submitted for approval.
The goal of this project is to address public comments on the public noticed draft Watershed Restoration & Protection Strategy (WRAPS) study and Total Maximum Daily Load (TMDL) report for the watershed, and to produce a final draft WRAPS study and TMDL report ready for final approval by the United States Environmental Protection Agency (USEPA) and Minnesota Pollution Control Agency (MPCA).
This Surface Water Assessment Grant (SWAG) project is intended to supplement the 2019-2020 Intensive Watershed Monitoring (IWM) process for the Buffalo and Upper Red River of the North watersheds. Nine sites will provide water chemistry and river eutrophication data to the IWM. Monitoring sites were requested by the Buffalo - Red River Watershed District (BRRWD) and the Minnesota Pollution Control Agency (MPCA).
This monitoring project includes lake and stream monitoring and encompasses all of Cass County, and surrounding counties. The project will obtain water quality data for streams; in 2009, lakeshed assessments indicated that many surface waters throughout the county were data deficient. This project will address the need for sufficient data on a county-wide basis and fulfill the State’s intensive watershed monitoring program goals by obtaining water quality data at targeted lake and stream sites.
This project will produce a final Total Maximum Daily Load (TMDL) study and Watershed Restoration and Protection Strategy (WRAPS) report that will be utilized by local government units for water planning purposes during the Board of Water and Soil Resources One Water One Plan process for the Clearwater River Watershed.
This project will complete a lake data set for 303(d) and Aquatic Recreation use assessments in Clearwater County by monitoring total phosphorus, chlorophyll-a and Secchi depth; by utilizing lakeshore owners.
The overall goal is to develop a Watershed Restoration and Protection Strategy (WRAPS) Report and Total Maximum Daily Load (TMDL) Study that will address water quality impairments and maintain or improve water quality throughout the Clearwater River watershed. The study will identify sources of pollutants to the streams and lakes, allocate pollution reduction goals, and prioritize and identify implementation strategies to maintain or improve water quality in key lakes and streams in the watershed.
This project will develop a TMDL for all impaired lakes within the Crow Wing Watershed by furthering data collection in the watershed, analysis of data, allocation calculations, and introducing outreach and stakeholder participation activities.
This project will provide Stressor ID work and assistance for the development of a work plan for the Major Watershed Project. The Major Watershed Project will include a plan for civic engagement and outreach, with assistance from ten Local Government Units from the Crow Wing River Watershed.
This project will collect a complete Trophic Site Index (TSI) data set for Crow Wing County lakes and a complete data set for streams and rivers for the Intensive Monitoring Program (IMP). Crow Wing County, Cass County, Wadena County, Morrison County and Hubbard County are partnering to ensure that all target lakes and rivers within the Crow Wing River watershed are monitored efficiently.
This first year of the project will collect available data relevant to the TMDL development, determine the data sets best suited for the TMDL development. Gain a better understanding of the watershed and impaired lakes, and assessment of all potential sources (internal and external) of the causes of lake impairment. EOR will also review the data produced by the MPCA for the impairment assessment for each of the lakes during year 1 of the project.
This project will initiate project coordination among project partners. It will enhance civic engagement and outreach endeavors activities to support Phase 2 of TMDL project. It will also support field activities associated with stressor ID work.
The Buffalo River Watershed Pilot Project is one of two pilots in Minnesota designed to develop a watershed approach for managing Minnesota’s surface waters. The goal of this project is to develop a plan that will guide surface water quality management throughout the watershed.
This project will construct three watershed framework models built using the Hydrologic Simulation Program FORTRAN. These executable models will simulate hydrology at the 12-digit HUC subbasin scale. An HSPF model will be built for each of the following 8-HUC watersheds: Red Lake River (09020303) and the Clearwater River (09020305).
This project covers activities necessary to complete the major watershed restoration and projection project. The major objectives this project covers include contract administration, watershed coordination, stressor ID activities, identifying priority management zones, engage watershed citizens, and the creation of watershed restoration and protection plans.
This project will finalize HSPF watershed model construction by incorporating internal phosphorus loading in modeled lakes, run a suite of implementation scenarios and generate a GenScn project containing model output. The consultant will produce HSPF watershed models that can readily be used to provide information to support conventional parameter TMDLs. The consultant will deliver all modeling files for baseline and implementation scenarios and provide a GenScn project containing model output.
This project will construct, calibrate, a set of HSPF watershed models covering the entire area of the Lake of the Woods drainage, including the Rainy River watershed. The consultant will produce HSPF models that can readily be used to provide information to support conventional parameter TMDLs. The consultant will clearly demonstrate that these models generate predicted output timeseries for hydrology which are consistent with available sets of observed data.
This project Phase will collect data, background information, and watershed characteristics within the Red Lake River watershed. This information will be documented within the framework of early draft TMDL Reports (with background information, but no load calculations) for impaired reaches within this watershed and early draft protection plans for the areas in the watershed that are not currently impaired.
This first phase of project will define the existing watershed conditions; identify gaps in existing data; design and implement a plan to address data gaps; incorporate gap data into watershed description; guide development of the HSPF model; establish citizen advisory, technical advisory and locally-based focus groups; research and design an education and outreach strategy; and design and deploy the tools and methods to employ the strategy.
This project determines ambient background per- and polyfluoroalkyl substance (PFAS) levels in urban and non-urban soils. This information will help Minnesota develop management strategies for PFAS contaminated soils.
This project will collect intermediate watershed load monitoring data on the Bigfork River which is critical to the identification of stressors and assist in defining areas of concern within the Bigfork Watershed and its greater Rainy River Watershed. Itasca County SWCD will closely collaborate with Koochiching SWCD and MPCA on this project.
This leadership workshop series will provide the participants (citizen leaders) with knowledge, skills, processes and tools that can help to strengthen their current efforts and nurture new ones.
BWSR will administer funding to eligible County projects that provide funds and other assistance to low income property owners to upgrade or replace Noncompliant Septic Systems. BWSR will also manage annual reporting completed by each County.
This project will finalize HSPF watershed model construction and complete the calibration/validation process. The consultant will add representation of point source discharges to the model. The consultant will compile flow data for the purposes of calibration and validation. An initial hydrologic calibration will be performed and submitted for approval.
This project will maximize the utility and usefulness of three HSPF models that have been constructed and calibrated for hydrology. The contractor will identify and reduce parameterization errors in the following three HSPF models: 1) Buffalo River Watershed, 2 ) Thief River Watershed, 3) Bois de Sioux-Mustinka Watersheds. This will result, not only in a better hydrology calibration, but will also improve each of the models’ ability to more accurately estimate sediment and pollutant loads and concentrations.