The goal of the project is the development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL.
The goal of this project is to complete a two-year data set for physical, bacterial, and water chemistry sampling for the Intensive Watershed Monitoring Plan to aid MPCA’s assessment of the aquatic health of the Mississippi Headwaters(HUC 07010101) Watershed.
The goal of this project is to collect data, water chemistry and field parameters, which will be paired with biological data collected by the MPCA to assess water quality conditions at seven sites along targeted reaches within the Snake River Watershed and five sites in the Two River Watershed.
This project will monitor six sites within the Minnesota River Basin: Hawk Creek near Maynard, Hawk Creek near Granite Falls, Beaver Creek near Beaver Falls, Yellow Medicine River near Granite Falls, Yellow Medicine River near Hanley Falls, and Spring Creek near Hanley Falls. The sites will be monitored according to MPCA’s Major Watershed Load Monitoring (WPLMN) Standard Operating Procedure, which is the procedure being followed for sites currently monitored by the Hawk Creek Watershed Project (HCWP).
This project will use the We Are Water MN traveling exhibit and the Minnesota Humanities Center's approach to community engagement, relationship building, and storytelling, to increase community capacity for sustainable watershed management in six Minnesota watersheds.
This project will use the We Are Water MN traveling exhibit and the Minnesota Humanities Center's approach to community engagement, relationship building, and storytelling, to increase community capacity for sustainable watershed management in five Minnesota watersheds. The following communities were selected as host sites for this project:
Winona (City of Winona), active hosting period: March 3-April 25, 2022
Lake City (Lake Pepin Legacy Alliance), active hosting period: April 28-June 20, 2022
This project will provide condition monitoring and problem investigation monitoring at the following sites.
Mississippi River: Tributaries include Bassett Creek, Cannon River, Crow River, and Minnehaha Creek.
Minnesota River: Tributaries include Eagle Creek,Riley Creek, and Valley Creek tributary to the St. Croix River
The Becker Soil and Water Conservation District will collect water chemistry and transparency data at Straight, Two Inlets, Hungry Man, Boot, Bass, Big Basswood, Shell, Big Rush and Bass lakes in the Crow Wing River watershed. District staff will collect a complete data set to be used for the Minnesota Pollution Control Agency's efforts to assess the condition of these lakes, and to prioritize restoration and protection activities in the Crow Wing River Watershed Restoration and Protection Strategy (WRAPS) cycle 2 report.
The goal of this project is to complete the construction of an Hydrologic Simulation Program FORTRAN (HSPF) watershed model for the Buffalo River watershed. Tetra Tech will produce a HSPF watershed model application(s) that will be fully functioning and ready for calibration as part of Phase 2.
This is the second phase of building the Hydrologic Simulation Program FORTRAN (HSPF) model for the Buffalo River watershed. The project will result in a completed model including necessary calibration and validation phases.
The United States Environmental Protection Agency (USEPA) requires the Minnesota Pollution Control Agency (MPCA) to carry out the Total Maximum Daily Load Program (TMDL) in the state of Minnesota. Minnesota has an abundance of lakes and river reaches, many of which will require a TMDL study. In an effort to expedite the completion of TMDL projects, the MPCA has decided to construct watershed models. These models have the potential to support the simultaneous development of TMDL studies for multiple listings within a cataloging unit or 8-digit Hydrologic Unit Code watershed.
This project will continue to develop, and calibrate/validate the hydrology of an Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Buffalo River watershed. The consultant will add representation of point source discharges to the model. The consultant will compile flow data for the purposes of calibration and validation. An initial hydrologic calibration will be performed and submitted for approval.
The goal of this project is to address public comments on the public noticed draft Watershed Restoration & Protection Strategy (WRAPS) study and Total Maximum Daily Load (TMDL) report for the watershed, and to produce a final draft WRAPS study and TMDL report ready for final approval by the United States Environmental Protection Agency (USEPA) and Minnesota Pollution Control Agency (MPCA).
This Surface Water Assessment Grant (SWAG) project is intended to supplement the 2019-2020 Intensive Watershed Monitoring (IWM) process for the Buffalo and Upper Red River of the North watersheds. Nine sites will provide water chemistry and river eutrophication data to the IWM. Monitoring sites were requested by the Buffalo - Red River Watershed District (BRRWD) and the Minnesota Pollution Control Agency (MPCA).
This monitoring project includes lake and stream monitoring and encompasses all of Cass County, and surrounding counties. The project will obtain water quality data for streams; in 2009, lakeshed assessments indicated that many surface waters throughout the county were data deficient. This project will address the need for sufficient data on a county-wide basis and fulfill the State’s intensive watershed monitoring program goals by obtaining water quality data at targeted lake and stream sites.
The Cottonwood River watershed is one of the last remaining watersheds to complete Cycle I of the Watershed Restoration & Protections Strategies (WRAPS) process. The scope of this project upon completion is have two reports developed; a Watershed Restoration and Protection Strategies report and a Total Maximum Daily Load (TMDL) for the entire watershed.
This project will develop a TMDL for all impaired lakes within the Crow Wing Watershed by furthering data collection in the watershed, analysis of data, allocation calculations, and introducing outreach and stakeholder participation activities.
The project will include lake monitoring on three (3) lakes found in the Rum River watershed in southeastern Crow Wing County (CWC). The project will be conducted in an effort to gain sufficient data on these data-deficient lake sites. All of the proposed monitoring sites are target sites for 2013-2014. One of the goals of the CWC Local Comprehensive Water Plan (CWP) is to establish a countywide Comprehensive Monitoring Plan (CMP).
This project will provide Stressor ID work and assistance for the development of a work plan for the Major Watershed Project. The Major Watershed Project will include a plan for civic engagement and outreach, with assistance from ten Local Government Units from the Crow Wing River Watershed.
The project will include lake and stream monitoring. Lake monitoring will be completed on twenty lakes found in The Crow Wing River Watershed - West Crow Wing County (CWC) & Southern Cass County for 2020. There will be 11 streams sampled located in Crow Wing, Cass, Wadena and the border of Cass/Morrison Counties 2020 & 2021. The project will be conducted in an effort to gain sufficient data on these data-deficient lake sites. One of the goals of the CWC Local Comprehensive Water Plan (CWP) is to establish a countywide Comprehensive Monitoring Plan (CMP).
This project will collect a complete Trophic Site Index (TSI) data set for Crow Wing County lakes and a complete data set for streams and rivers for the Intensive Monitoring Program (IMP). Crow Wing County, Cass County, Wadena County, Morrison County and Hubbard County are partnering to ensure that all target lakes and rivers within the Crow Wing River watershed are monitored efficiently.
This first year of the project will collect available data relevant to the TMDL development, determine the data sets best suited for the TMDL development. Gain a better understanding of the watershed and impaired lakes, and assessment of all potential sources (internal and external) of the causes of lake impairment. EOR will also review the data produced by the MPCA for the impairment assessment for each of the lakes during year 1 of the project.
This project will initiate project coordination among project partners. It will enhance civic engagement and outreach endeavors activities to support Phase 2 of TMDL project. It will also support field activities associated with stressor ID work.
The Buffalo River Watershed Pilot Project is one of two pilots in Minnesota designed to develop a watershed approach for managing Minnesota’s surface waters. The goal of this project is to develop a plan that will guide surface water quality management throughout the watershed.
This project will directly inform the Lake of the Woods (LoW )TMDL process by identifying nutrient reduction targets, a timeline of phosphorus loadings to the lake, and measures of historical in-lake variability (e.g., nutrients, biological communities). Results will complement and build on ongoing research efforts on internal loading and sediment core analysis.
This project willl complete a final TMDL document that will be submitted to EPA for approval. Document will include Lake Osakis, Clifford Lake, Faille Lake, and Smith Lake impairments. A final technical memorandum describing the elements of the model framework and any deviations from the recommended construction methodology will be also be provided with the submission of the watershed models.
This project will support the collection and analysis of sediment core samples, from each of the five bays ( Little Traverse, Big Traverse, Muskeg, Sabaskong and 4-Mile Bays), to ensure adequate characterization of the P fluxes from deposited sediment and equilibrium P fluxes from re-suspended sediment.
This project will support a civic engagement cohort that will be offered in southwest Minnesota to foster partnering and build capacity of local government, organizations, and residents for effective civic engagement in water protection and restoration. This project will also build networks and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection. The cohort will be administered through the Minnesota River Board (MRB), established in 1995 with a goal of focusing water management efforts on the local level.
This project covers activities necessary to complete the major watershed restoration and projection project. The major objectives this project covers include contract administration, watershed coordination, stressor ID activities, identifying priority management zones, engage watershed citizens, and the creation of watershed restoration and protection plans.
This project will finalize HSPF watershed model construction by incorporating internal phosphorus loading in modeled lakes, run a suite of implementation scenarios and generate a GenScn project containing model output. The consultant will produce HSPF watershed models that can readily be used to provide information to support conventional parameter TMDLs. The consultant will deliver all modeling files for baseline and implementation scenarios and provide a GenScn project containing model output.
This project will establish a framework and provide tools for local government and watershed projects to engage the public in a manner that will lead to water quality improvement through targeted and prioritized implementation of watershed management practices. The major components of the watershed approach that will be used for this project include; monitoring, gathering of watershed information, assessment of the data, develop of implementation strategies, and implementation of water quality protection and restoration activities.
This project approach will include monitoring and gathering of watershed information, assess the data, develop implementation strategies to meet standards and protect waters, implement water quality protection and restoration activities in the watershed. The goal of this project is to establish a framework, and to provide information and tools for local government and watershed organizations to engage the public in a manner that will lead to water quality improvement.
This project will complete a pollutant source identification and subwatershed information report and support the development of a Draft Restoration and Protection Plan (RAPP). It will also support the devlopment of a Implementation Plan that will identify target areas for BMP implementation for bacteria reductions.
This project will complete spatial and temporal revisions , recalibration and validation of 7 watershed HSPF models. These fully functioning calibrated validated executable models will simulate hydrology, sediment (sand, silt, and clay), temperature, phosphorus, nitrogen, dissolved oxygen, biochemical oxygen demand, and algae at the 12-digit HUC subbasin scale (or finer).
This project will construct, calibrate, a set of HSPF watershed models covering the entire area of the Lake of the Woods drainage, including the Rainy River watershed. The consultant will produce HSPF models that can readily be used to provide information to support conventional parameter TMDLs. The consultant will clearly demonstrate that these models generate predicted output timeseries for hydrology which are consistent with available sets of observed data.
This project will support the completion of a final draft Total Maximum Daily Load (TMDL) document for the Osakis, Smith and Faille Lakes TMDL and the submittal to EPA for final approval.
This project will construct, calibrate, and validate an HSPF watershed model for the Lake of the Woods River watershed. The consultants will produce HSPF watershed models that can readily be used to provide information to support conventional parameter TMDLs. The consultants will clearly demonstrate that the models generate predicted output time series for hydrology, sediment, nutrients, and dissolved oxygen that are consistent with available sets of observed data.
This project will determine the magnitude and sources of pollutants in Little Rock Creek and will estimate the reductions in loadings that are needed in order for the stream reaches to support cold water fish assemblages and attain water quality standards.
This project will offer incentives to protect 80 acres of land in filter strips and highly erodible lands adjacent to the rivers; construct 9 sediment and water control basins or terraces; replace 35 open tile intakes and advocate wetland restorations and grassland easement programs; organize a Friendship Tour to bring together Minnesota farmers, county commissioners, farm organizations, local, state and federal agency personnel to experience the watershed, farming practices, discuss future project ideas and strengthen relationships; and upgrade 37 subsurface sewage treatment systems by off