This project will use the We Are Water MN traveling exhibit and the Minnesota Humanities Center's approach to community engagement, relationship building, and storytelling, to increase community capacity for sustainable watershed management in six Minnesota watersheds.
To partner with local non-profits to bring arts and cultural heritage demonstrations to the Pope County Fair. Demonstrations will range from quilting and spinning to the fine arts, rosemaling, and lefse making.
To enhance the free arts and cultural heritage performances on Pope County Fair's Free Stage by installing a permanent sound system and bring a Medicine Wagon Show to perform multiple shows each day of the fair. Additionally, to mount historical markers around the fair to explain the history of the buildings and fairgrounds.
To build a mobile stage and purchase sound and lighting equipment, in order to increase the fair's ability to host arts and cultural heritage programming.
This project is to refresh the Cannon River Watershed Hydrologic Simulation Program FORTRAN (HSPF) model. The previous model was developed for the time period of 1995-2012. This phase will extend the model to include data through 2019. All time series data will be updated through 2019, land classification zones will be restructured, hydrology calibration will be updated as needed, and final reporting including technical memo and model package.
This project will include lake and stream monitoring on 23 lakes and 4 streams found within the Leech Lake River and Pine River watersheds in Cass County. The project will be conducted in an effort to gain sufficient data on these data-deficient lake and stream sites within these watersheds. All of the proposed monitoring sites are target sites located in the targeted watersheds for 2012. Cass ESD is partnering with Hubbard SWCD, the Leech Lake Band of Objibwe, and RMB Environmental Laboratories to conduct the fieldwork for this project.
This project will place the Cedar River watershed on a sustainable and clearly understood implementation process for comprehensive water management. All people living in the watershed and all groups operating and managing land in the watershed, are responsible stakeholders in the effort. Objectives for this phase of the project include:
1. Develop a comprehensive watershed restoration and protection strategy.
2. Continue development of a more coordinated and comprehensive citizen participation process.
This project will include lake and stream monitoring on 7 lakes and 3 streams found within the Pine River watershed. The project will be conducted in an effort to gain sufficient data on these data-deficient lake and stream sites within these watersheds. All of the proposed monitoring sites are target sites for 2012. One of the goals in the Crow Wing County (CWC) Local Comprehensive Water Plan (CWP) is to establish a countywide Comprehensive Monitoring Plan (CMP).
The project will include lake and stream monitoring. Lake monitoring will be completed on twenty lakes found in The Crow Wing River Watershed - West Crow Wing County (CWC) & Southern Cass County for 2020. There will be 11 streams sampled located in Crow Wing, Cass, Wadena and the border of Cass/Morrison Counties 2020 & 2021. The project will be conducted in an effort to gain sufficient data on these data-deficient lake sites. One of the goals of the CWC Local Comprehensive Water Plan (CWP) is to establish a countywide Comprehensive Monitoring Plan (CMP).
This first year of the project will collect available data relevant to the TMDL development, determine the data sets best suited for the TMDL development. Gain a better understanding of the watershed and impaired lakes, and assessment of all potential sources (internal and external) of the causes of lake impairment. EOR will also review the data produced by the MPCA for the impairment assessment for each of the lakes during year 1 of the project.
This project willl complete a final TMDL document that will be submitted to EPA for approval. Document will include Lake Osakis, Clifford Lake, Faille Lake, and Smith Lake impairments. A final technical memorandum describing the elements of the model framework and any deviations from the recommended construction methodology will be also be provided with the submission of the watershed models.
This project will support a civic engagement cohort that will be offered in southwest Minnesota to foster partnering and build capacity of local government, organizations, and residents for effective civic engagement in water protection and restoration. This project will also build networks and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection. The cohort will be administered through the Minnesota River Board (MRB), established in 1995 with a goal of focusing water management efforts on the local level.
This project covers activities necessary to complete the major watershed restoration and projection project. The major objectives this project covers include contract administration, watershed coordination, stressor ID activities, identifying priority management zones, engage watershed citizens, and the creation of watershed restoration and protection plans.
This project will finalize HSPF watershed model construction by incorporating internal phosphorus loading in modeled lakes, run a suite of implementation scenarios and generate a GenScn project containing model output. The consultant will produce HSPF watershed models that can readily be used to provide information to support conventional parameter TMDLs. The consultant will deliver all modeling files for baseline and implementation scenarios and provide a GenScn project containing model output.
This project will develop and execute three point source related scenarios for the Chippewa River watershed using an existing HSPF watershed model. This project will also support the review of the HSPF Modeling Guidance Document.
This project will establish a framework and provide tools for local government and watershed projects to engage the public in a manner that will lead to water quality improvement through targeted and prioritized implementation of watershed management practices. The major components of the watershed approach that will be used for this project include; monitoring, gathering of watershed information, assessment of the data, develop of implementation strategies, and implementation of water quality protection and restoration activities.
This project will build network and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection in Southeast Minnesota. The cohort will be administered through the Southeast Minnesota Water Resources Board (SE MN WRB) which is an area wide Joint Powers Board (JPB) established to help improve and protect the water resources of the area through coordinating local water planning efforts. This JPB has successfully administered water quality grants in the past that have positively impacted the water resources of this region.
This project includes project planning, coordination, stream reconnaissance, and begins the effort towards civic engagement/outreach components of the South Fork Crow River Watershed project. Phase I will focus towards the development of project teams, identifying stakeholders, developing an initial civic engagement strategic plan and conducting limited lake and stream monitoring.
This project approach will include monitoring and gathering of watershed information, assess the data, develop implementation strategies to meet standards and protect waters, implement water quality protection and restoration activities in the watershed. The goal of this project is to establish a framework, and to provide information and tools for local government and watershed organizations to engage the public in a manner that will lead to water quality improvement.
This project will complete an implementation plan, as required by the Minnesota Pollution Control Agency, for the Zumbro River turbidity TMDL project. It will also revise the Zumbro River Watershed Management Plan (completed 2007) to ensure it continues to reflect local needs, incorporates new information, and develops more effective linkages with related local, state and federal government programs.
BWSR will administer funding to eligible County projects that provide funds and other assistance to low income property owners to upgrade or replace Noncompliant Septic Systems. BWSR will also manage annual reporting completed by each County.
This project will monitor seven lakes and 15 stream sites within the Hawk Creek Watershed to collect surface water quality data to determine the health of the watershed's streams and lakes and if they are in need of restoration or protection strategies. The sites will be monitored according to Minnesota Pollution Control Agency's Water Monitoring Standard Operating Procedures. The goal of this project will be to accurately gather water quality samples and data as part of an organized effort to determine surface water quality conditions within the Hawk Creek Watershed.
This project will monitor six sites within the Minnesota River Basin: Hawk Creek near Maynard, Hawk Creek near Granite Falls, Beaver Creek near Beaver Falls, Yellow Medicine River near Granite Falls, Yellow Medicine River near Hanley Falls, and Spring Creek near Hanley Falls. The sites will be monitored according to the Minnesota Pollution Control Agency (MPCA) Watershed Pollutant Load Monitoring Network (WPLMN) Standard Operating Procedure, which is the procedure being followed for sites currently monitored by the Hawk Creek Watershed Project.
To engage the residents of Hubbard County in the arts and encourage them to exhibit their work in the Open Class Building. Funds will additionally be used to restore the one room school house.
This project will include water quality monitoring on two rivers and twenty lakes found within the Crow Wing River Watershed. Rivers included are Fishhook and Straight River; lakes included are Mow, Big Bass, 11 CROW WING (MAIN), 11 CROWWING (EAST), Tenth Crow Wing, Third Crow Wing, Fourth Crow Wing, First Crow Wing, Shallow, Deer, Waboose, East Crooked, Middle Crooked, West Crooked, Dead, Ojibway, Upper Twin, Pickerel, Moran, Little Mantrap, Portage. Water quality sampling will be conducted according to Minnesota Pollution Control Agency work plan parameters.
This project will continue HSPF watershed model construction beyond the initial framework development. The consultant will add representation of point source discharges to the model. The consultant will also compile flow data for the purposes of calibration and validation. Finally, an initial hydrologic calibration will be performed and submitted for approval.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.
The goal of this project is to support the Minnesota Pollution Control Agency (MPCA) in responding to public comments on the Lake Pepin Watershed Phosphorus Total Maximum Daily Loads (TMDLs), which were prepared by LimnoTech under previous phases of the project.
This project supports the planning, coordination and civic engagement/outreach components of the Leech Lake River Major Watershed project. Phase 1 will focus towards the development of project teams, identifying stakeholders, developing an initial civic engagement strategic plan and reviewing current and past watershed project data. Phase II of this project will focus on source assessment, running of watershed modeling scenarios, lake protection planning, stressor identification and the continuation of the Civic Engagement components of the project.
This project will gather watershed data to support the development of a Watershed Restoration and Protection Strategy with parameter-specific targets that will maintain or improve water quality for the Long Prairie River Watershed. This project will also provide an important framework for civic and citizen engagement and communication, contributing to long-term public participation in surface water protection and restoration activities throughout the watershed.
This Sauk River Watershed District project will conduct the Whitney Park river clean-up, adopt a river program and other community events as part of their healthy living programs; will collaborate with the city of St. Cloud to install a rain garden demonstration site at Whitney Park; use local radio and public television stations to promote the District’s “neighborhood rain garden initiative” and other incentive programs.
Mankato State University (MSU) will work with the Minnesota Pollution Control Agency (MPCA) and the Minnesota Department of Agriculture (MDA) to plan a stakeholder process kick off meeting for the Minnesota River Ag/Urban partnership project. MSU will help to plan and facilitate the meeting.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project will complete the final Implementation Plan, semi-annual and final reports and hold project meetings. The Implementation Plan will identify target areas and priorities for implementation strategies to improve water quality for Bluff Creek. This project will build the groundwork so Bluff Creek will meet water quality standards for aquatic life in the future.
This work order will extend all of the timeseries in the Sauk River Watershed Hydrological Simulation Program FORTRAN (HSPF) model through 2019. The Sauk River Watershed HSPF model simulates hydrology, sediment (sand, silt, and clay), temperature, phosphorus, nitrogen, dissolved oxygen, biochemical oxygen demand, and chlorophyll a.
To host a children's show about life on the farm through songs and stories, and offer a presentation about, and create a display area of, antique horse drawn machinery used by farmers from the Le Sueur County area.
This project will include stream monitoring of six preselected sites from the Leech Lake Watershed (HUC 07010102) and Pine River Watershed (HUC 07010105). The sites will be monitored for chemical, physical and biological parameters for two years.