The goal of this project is to perform water quality monitoring and load calculation duties to accomplish MPCA's Watershed Pollutant Load Monitoring Network monitoring efforts at seven sites for the Redwood and Cottonwood River watersheds as well as the Minnesota River site near Morton.
This project will accelerate production of County Geologic Atlases (part A). An atlas is a set of geologic maps and associated databases for a county that facilitate informed management of natural resources, especially water and minerals.
South Central Technical Service Area (SCTSA) will use this Clean Water Fund grant to provide Soil and Water Conservation Districts and other local organizations in its eleven-county area with a Geographic Information System (GIS) Technician to assist in using available GIS information to target specific locations where Best Management Practices (BMPs) can be installed to help improve water quality.
The Minnesota DNR and the Minnesota Forest Resources Council work with forest landowners, managers and loggers to implement a set of voluntary sustainable forest management guidelines that include water quality best management practices (BMPs) to ensure sustainable habitat, clean water, and productive forest soils, all contributing to healthy watersheds. This project will monitor the implementation of these forest management guidelines and BMPs on forested watersheds in MN.
The goal of this project is to complete the calibration/validation process of Hydrologic Simulation FORTRAN (HSPF) watershed models for the Lake of the Woods/Rainy River Basin.
The goal of this project is to construct, calibrate, and validate a watershed model using HSPF. RESPEC will produce a HSPF model that can readily be used to provide information to support conventional parameter TMDLs.
This project is for constructing, calibrating, and validating a Hydrologic Simulation Program FORTRAN (HSPF) watershed models for the Minnesota portions of the Des Moines Headwaters, Lower Des Moines, and East Fork Des Moines watersheds. The model can be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) reports. This model generates predicted output timeseries data for hydrology, sediment, nutrients, and dissolved oxygen that are consistent with observed data.
The goal of this project is to extend the existing HSPF models through 2012 in the Chippewa Watershed (07020005) and Hawk-Yellow Medicine Watershed (07020004) to incorporate recent monitoring data to support current MPCA business needs and sediment source investigations.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.
This project will help to improve the water quality of Lake of the Woods by providing local staff with the resources necessary for implementing best management practices that will reduce erosion in drainage ditches. The Lake of the Woods Soil and Water Conservation District (SWCD) will assist the County in developing a process for inventory and inspection of ditches. Public drainage is critical to the local economy and proper drainage management is critical to water quality protection.
The purpose of this project is to gain an understanding of modern and historical nutrient and thermal dynamics in Lake of the Woods using modeling, monitoring, sediment core analysis, and whole basin techniques.
The Rainy River - Rainy Lake, Rainy River - Baudette and Rapid River Watershed Assessments will include the waters of the Baudette River, Black River, Peppermint Creek, Rapid River, Rat Root River and Winter Road River in Koochiching and Lake of the Woods Counties. This assessment focuses on collection of water chemistry and field parameters at the 12 key sites identified and modified by the Minnesota Pollution Control Agency (MPCA). Five of the sites will have extra total phosphorus and chlorophyll analysis completed as identified by the MPCA for collecting river nutrients.
This project will complete the Total Maximum Daily Load (TMDL) study and Watershed Restoration and Protection Strategies (WRAPS) for the Lake Superior North watershed. Two segments of the Flute Reed River are impaired for aquatic life due to elevated turbidity and total suspended solids. The lower Poplar River is also listed as impaired but significant progress has occurred in the last 10 years. A TMDL and implementation plan have been completed for the lower Poplar River impairment. All other waters meet water quality standards and will be considered for protection measures.
The Lake of the Woods (LOW) Total Maximum Daily Load (TMDL) study will: (1) identify water quality goals for the Minnesota portions of the LOW/Rainy River Watershed; (2) recommend nutrient allocations to achieve TMDLs where waters do not meet standards; and (3) provide opportunities for stakeholders to engage in the process of watershed-management planning to adopt protection and restoration strategies. The project will include existing in-lake and watershed model updates, TMDL component development, restoration plan development, and public participation.
The goal of this project is to determine: 1) temperature and seasonal variations in sediment chemical-textural characteristics (upper 10-cm sediment layer) and rates of P release from sediments; and 2) vertical variations in mobile P concentrations in the sediment column of Big Traverse Bay in order to better understand the role of internal P loading to the P economy of LOW and for the development of the LOW TMDL.
The Minnesota Pollution Control Agency (MPCA) is a co-sponsor and assists with a portion of the financial support for the International Rainy River-Lake of the Woods Watershed Forum.
This project will address Minnesota Pollution Control Agency (MPCA), United States Environment Protection Agency (EPA), and public comments on draft Total Maximum Daily Load (TMDL) studies and Watershed Restoration and Protection Strategy (WRAPS) reports, preliminary draft TMDL studies, and public noticed TMDL studies and WRAPS reports for the Lower Red River Watershed and the Lake of the Woods Watershed and produce final versions of the TMDL studies and WRAPS reports for each watershed.
This project addresses five reaches of the Minnesota River that have aquatic recreation impairments as identified by high concentrations of E. coli. The project will describe the water quality impairments, complete pollutant source assessments, establish loading capacities and allocations for the impairments, and develop implementation strategies.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
The goal of this project is to analyze and document database architecture, platform, table structures, systems and data fields at six Minnesota agencies (Board of Soil and Water Resources, Department of Natural Resources, MN Department of Agriculture, MN Department of Health, Metropolitan Council, and MN Pollution Control Agency) for 30+ databases related to water.
The Greater Blue Earth River Basin Alliance (GBERBA) along with Soil and Water Conservation Districts, Counties, landowners, and drainage authorities in the ten member counties will install conservation drainage practices to improve water quality. 103E drainage systems with documented sediment or water quality issues are the focus with the goal of installing 52 practices such as improved side inlets (grade stabilization structures), alternative tile inlets, denitrifying bioreactors, saturated buffers, storage wetlands and others.
The goal of this project is to refine the nutrient and algae simulation in the Minnesota River basin using all relevant available sources of information. The outcome of this work order is a revised Hydrological Simulation Program – FORTRAN (HSPF) watershed model application for the Minnesota River basin that correctly represents nutrient sources and algae.
This project will provide an important framework for civic and citizen engagement and communication in the International Rainy River-Lake of the Woods Watershed, which will contribute to long-term public participation in surface water protection and restoration activities.
The Rapid River Watershed Restoration and Protection Strategy (WRAPS) project will result in the development of the restoration and protection strategies for the watershed and engage the local stakeholders in the practices of watershed management. This project will also develop Total Maximum Daily Loads (TMDLs) for impaired waters.
In 2017 and 2018, Redwood-Cottonwood Rivers Control Area (RCRCA) will collect water chemistry samples from the 10 lakes and 24 stream sites identified in the Redwood and Cottonwood River watersheds. Six samples will be collected at 10 lakes from May through September in 2017; five samples will be collected at 5 lakes in 2018 from May through September. Eleven samples will be collected at each of the 24 stream sites following the Basic Regime in 2017. Sixteen samples at each stream site will be collected in 2017 and 2018 following the E.coli monitoring regime.
The goal of this project is the continued development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL. The overall strategy will be used to help establish a path towards achieving the required reductions of turbidity/TSS.
A new GIS technician will help prioritize and target conservation activities and protection strategies in nine north-central Minnesota counties. The GIS technician will create GIS products, assessments, and watershed analysis to identify the high priority areas in each County or watershed in need of protection or restoration using all available data, including LiDAR, soils, land use, completed WRAPS and other datasets. These areas will then be targeted for future resource management efforts, Clean Water Fund projects, and additional conservation activities.
The Southwest Prairie Technical Service Area 5 (SWPTSA), located in the southwest corner of Minnesota, encompasses 11 Soil and Water Conservation Districts (SWCDs): Cottonwood, Jackson, Lac Qui Parle, Lincoln, Lyon, Murray, Nobles, Pipestone, Redwood, Rock, and Yellow Medicine. This project will protect natural resources within the three major river basins of Minnesota, Missouri and Des Moines Rivers. The SWPTSA will assist member SWCDs in locating and identifying priority subwatersheds that have soil erosion and water quality issues using terrain analysis.
The Watonwan Watershed Technician will provide highly focused targeting of conservation programs and practices. The technician will enhance current staff capabilities in the Watonwan watershed by collecting landowner contact information from previous studies and GIS methods, produce mass mailings about funding opportunities, and meet one-on-one with landowners to discuss their conservation concerns. The technician will implement 45 projects/practices over a three year period.
In conjunction with the Watonwan Major Watershed Project engagement process, create a contact strategy for community/landowner opportunities, obstacles, and opinions on land management and water quality that will result in the identification of restoration and protection strategies for the Watonwan River watershed.
Develop a network of informed citizens, business people, community leaders and others capable of acting collectively to get work done in a sustained, strategic and meaningful way through a sense of shared ownership in the water resource management process.
The Watonwan Watershed Resource Specialist has been funding with Clean Water funds since 2012. Since that time, the Watonwan Watershed Resource Specialist has been a crucial connector between landowners and natural resource professionals in the Watonwan Watershed. As the technical ability and responsibilities of the WWRS expands, the need and urgency to secure extended funding becomes a priority. This project will fund half of the Watonwan Watershed Research Specialist position through year 2020.