The goal of this project is to perform water quality monitoring and load calculation duties to accomplish MPCA's Watershed Pollutant Load Monitoring Network monitoring efforts at seven sites for the Redwood and Cottonwood River watersheds as well as the Minnesota River site near Morton.
Carlton County Soil and Water Conservation District (SWCD) and local volunteers will lead an effort to collect total phosphorus, chlorophyll-A, hardness, chloride and secchi disc transparency data for the Minnesota Pollution Control Agency (MPCA) Surface Water Assessment Grant project on the following 10 lakes: Twentynine, Bob, Bear, Little Hanging Horn, Hanging Horn, Moose, Echo, Coffee, Kettle and Merwin.
The goal of this project is to construct, calibrate, and validate one fine-scale Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Duluth Watershed Restoration and Protection Strategy (WRAPS) project area for the simulation period 1995–2012. In addition, an existing condition (post-2012 flood) model scenario will be developed for use in WRAPS development. The contractor will produce HSPF models that can readily be used to provide information to support conventional parameter TMDLs.
The goal of this project is to complete the calibration/validation process of Hydrologic Simulation FORTRAN (HSPF) watershed models for the Lake of the Woods/Rainy River Basin.
The goal of this project is to construct, calibrate, and validate a watershed model using HSPF. RESPEC will produce a HSPF model that can readily be used to provide information to support conventional parameter TMDLs.
The goal of this project is to extend the existing HSPF models through 2012 in the Chippewa Watershed (07020005) and Hawk-Yellow Medicine Watershed (07020004) to incorporate recent monitoring data to support current MPCA business needs and sediment source investigations.
Starting in 2016 the Minnesota Pollution Control Agency (MPCA) will be collecting monitoring data on many lakes and streams in the Kettle River and Upper Saint Croix Watersheds. While this information will be useful to assess the overall health of the watershed, it will miss locations in the watershed that can provide critical information to local implementers, local governments, and citizens.
The primary goal of this project is to partner with stakeholders in the development of a comprehensive Watershed Restoration and Protection Strategies (WRAPS) report to be used on the local level. Achieving this goal will require sound working relationships between local government units (LGUs), watershed citizens, and state and federal government. Gathering input from these groups will be critical when the Minnesota Pollution Control Agency (MPCA) drafts a WRAPS Report that can be utilized by local decision-makers.
This project is to conduct water chemistry monitoring at two subwatershed sites and two major watershed sites based on flow conditions, targeting runoff events using protocols defined in the Watershed Pollutant Load Monitoring Network (WPLMN) Standard Operating Procedures and Guidance. The data collected will be submitted to Minnesota Pollution Control Agency (MPCA) and used for calculating pollutant loads. This loading information, in turn, will be used at both the state and local level to guide policy and strategies for the restoration and protection of Minnesota’s waters.
The purpose of this project is to gain an understanding of modern and historical nutrient and thermal dynamics in Lake of the Woods using modeling, monitoring, sediment core analysis, and whole basin techniques.
The Lake of the Woods (LOW) Total Maximum Daily Load (TMDL) study will: (1) identify water quality goals for the Minnesota portions of the LOW/Rainy River Watershed; (2) recommend nutrient allocations to achieve TMDLs where waters do not meet standards; and (3) provide opportunities for stakeholders to engage in the process of watershed-management planning to adopt protection and restoration strategies. The project will include existing in-lake and watershed model updates, TMDL component development, restoration plan development, and public participation.
The goal of this project is to determine: 1) temperature and seasonal variations in sediment chemical-textural characteristics (upper 10-cm sediment layer) and rates of P release from sediments; and 2) vertical variations in mobile P concentrations in the sediment column of Big Traverse Bay in order to better understand the role of internal P loading to the P economy of LOW and for the development of the LOW TMDL.
The Minnesota Pollution Control Agency (MPCA) is a co-sponsor and assists with a portion of the financial support for the International Rainy River-Lake of the Woods Watershed Forum.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds. Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support. Biological and Water Chemistry Stream Monitoring: Monitoring to assess the conditions of streams in each watershed.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
The goal of this project is to analyze and document database architecture, platform, table structures, systems and data fields at six Minnesota agencies (Board of Soil and Water Resources, Department of Natural Resources, MN Department of Agriculture, MN Department of Health, Metropolitan Council, and MN Pollution Control Agency) for 30+ databases related to water.
The West Fork Des Moines Headwaters Water Sampling Project consists of collecting water samples and along with field data from three sampling sites within the West Fork Des Moines River Headwaters located in Murray County, MN. The sampling will take place from May 2014 through September 2014, and then again from June 2015 through August 2015. During this sampling regime, the three stream sites will be sampled sixteen times. Field replicates as well as blanks will be collected also. The three sites identified for sampling are the West Fork Des Moines RIver, Beaver Creek, and Lime Creek.
The project goal is to assist the Minnesota Pollution Control Agency (MPCA) with meeting the objectives of the Surface Water Assessment Grant (SWAG) to conduct field and water chemistry monitoring at MPCA specified lake sampling locations and stream locations. This will be accomplished by collecting water samples at seven lake sites and eight streams in the Kettle and Upper St. Croix Watersheds, as well as compiling and submitting the required data, information and reports.
The goal of this workplan is to define the major factors causing harm to fish and other river and stream life within the Nemadji Watershed. The work will complete the strength of evidence tables, will explain the linkages between biological monitoring results and water quality assessments, and will organize this information into a scientific evidence structure that supports the conclusions of the overall process. Multiple lines of evidence are reviewed and evaluated to produce a final evaluative report. This work order, the second of two, begins in 2013 and will be completed in year 2014.
The overall goal of this project is to perform water quality monitoring and load calculation duties to accomplish Minnesota Pollution Control Agency (MPCA) Watershed Pollutant Load Monitoring Network (WPLMN) monitoring efforts at the seven sites within the Redwood and Cottonwood River watersheds as well as the Minnesota River site near Morton. To accomplish this goal the requested funds will provide for technician’s time, mileage, lab costs, supplies, as well as equipment calibration and upkeep.
The goal of this project is the continued development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL. The overall strategy will be used to help establish a path towards achieving the required reductions of turbidity/TSS.
The goal of this project is to provide drilling services for the Sentinel Lakes Groundwater/Surface Water Interaction Network. The three new wells will be used for monitoring the interaction between groundwater and surface water in Lakes Shaokatan and Bear Head. Groundwater/lake water interactions are not well understood, and in order to produce accurate and useful Total Maximum Daily Load watershed investigations and impairment remediations, the MPCA must understand how groundwater affects lake water quality.
The goal of this project is to collect updated lake water quality data for the lakes in the Tamarack River chain to feed Hydrologic Simulation Program FORTRAN (HSPF) modeling during the MPCA Watershed Monitoring program scheduled for 2015, and allow for better targeting of issues and lakes for implementation of clean water practices.
This project will extend the simulation period for the Hydrological Simulation Program - FORTRAN (HSPF) models for the Grand Rapids, Brainerd, Crow Wing, Redeye, Long Prairie, Sartell, Sauk, St. Cloud, and Crow watersheds, and review and comment on the calibration.
The goal of this project is to calibrate, and validate three watershed models using the Hydrological Simulation Program FORTRAN (HSPF) model. The contractor will produce HSPF watershed models that can be further developed to provide information to support conventional parameter TMDLs. The contractor will clearly demonstrate that the models generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
2016: Five locations will be monitored in support of the combined Vermilion Community College and Rainy River Community College 2016 – 2017 Minnesota Pollution Control Agency (MPCA) Watershed Pollutant Load Monitoring Network (WPLMN) Sampling Agreement. Water samples, field measurements, field images, and other observations will be obtained at each location during each sampling event.
Five locations will be monitored in support of the combined Vermilion Community College and Rainy River Community College 2014 – 2015 MPCA Watershed Pollutant Load Monitoring Network (WPLMN) Sampling Grant. Water samples, field measurements, field images / pictures, and other measurements and observations will be obtained at each location during each sampling event.