MSU-Mankato Water Resources Center in the Mankato area will provide conventional pollutant monitoring at the following sites: Beauford Ditch, Big Cobb River, Blue Earth River, Le Sueur River (3), Little Cobb River, Minnesota River (2), Watonwan River.
This project will support the monitoring of two sites on the Cannon River throughout the field seasons of 2013 and 2014 during storm events and baseflow conditions to capture 25 samples per year at each site according to the WPLMN objectives. The information gathered from these samples and site visits will be compiled for reporting purposes and for use in calculating pollutant loading using the FLUX32 model.
The MPCA has identified 13 stream sites in the watershed to characterize watershed water quality. This project will supplement and complement the identification of the top 50 sites in the watershed that are contributing to water impairment and also help in identification of priority watersheds in the re-write of the watershed comprehensive plan. Water samples and field measurements will be collected at each monitoring location ranging from baseline events to high flow events.
This project will obtain spatial and long-term pollutant load information from the Root River watershed in Southeast Minnesota. To accomplish this, the Fillmore Soil and Water Conservation District (SWCD) will assist the MPCA with water quality monitoring and annual pollutant loading calculations. Approximately 25 grab samples will be collected/site/year at 5 sites within the Root River watershed (totaling 125 grab samples/year). Annual load calculations for each site will be determined using the FLUX32 model.
This project goal is to conduct water chemistry monitoring at seventeen stream locations, to record and submit all data collected through this process, and to provide the information necessary for the calculation of water quality pollutant loads using the FLUX32 program.
This project will use the We Are Water MN traveling exhibit and the Minnesota Humanities Center's approach to community engagement, relationship building, and storytelling, to increase community capacity for sustainable watershed management in six Minnesota watersheds.
This project will use the We Are Water MN traveling exhibit and the Minnesota Humanities Center's approach to community engagement, relationship building, and storytelling, to increase community capacity for sustainable watershed management in five Minnesota watersheds. The following communities were selected as host sites for this project:
Winona (City of Winona), active hosting period: March 3-April 25, 2022
Lake City (Lake Pepin Legacy Alliance), active hosting period: April 28-June 20, 2022
The goal of this project is to facilitate strategic networking, relationships, and learning in targeted groups to assess, build, and leverage community capacity (i.e. community resources and values) to increase knowledge of the Blue Earth River watershed’s water resources and increase best management practice (BMP) adoption to restore and protect water quality in the Blue Earth River watershed. Additional goals include providing information that is readily available to the general public for updates on Watershed Approach work in the Blue Earth River watershed.
The goal of this project is to develop and write the Watershed Restoration and Protection Strategy (WRAPS) report for the Blue Earth River Watershed to provide restoration strategies to improve water quality for impaired waters and protection strategies to maintain the quality of water for water bodies meeting standards.
This project will utilize a systematic approach to identify principal sources, or “hot-spots”, of sediment contributions and work with individual landowners, county drainage officials, and municipalities to coordinate and implement critical Best Management Practices (BMP’s), establish demonstration sites, and provide education and outreach efforts. This project will also establish baseline watershed data with the addition of site specific information, and determine high priority watersheds. Appropriate practices will be identified and mapped utilizing GPS and GIS equipment and software.
The goal is to facilitate strategic networking, learning, and implementation in targeted groups to assess, build, and leverage community capacity (i.e. community resources and values) to increase best management practice (BMP) adoption to restore and protect water quality in the Blue Earth River watershed
The goal of this project is to use a science-based and participatory approach to understanding and promoting conservation practices in the agricultural community.
Complete section 3 of Watershed Restoration and Protection Strategy (WRAPS) document for the Cannon and Zumbro Watersheds and provide input to sections 1 and 2.
This project will place the Cedar River watershed on a sustainable and clearly understood implementation process for comprehensive water management. All people living in the watershed and all groups operating and managing land in the watershed, are responsible stakeholders in the effort. Objectives for this phase of the project include:
1. Develop a comprehensive watershed restoration and protection strategy.
2. Continue development of a more coordinated and comprehensive citizen participation process.
The United States Environmental Protection Agency requires the Minnesota Pollution Control Agency (MPCA) to carry out the Total Maximum Daily Load (TMDL) program in the state of Minnesota. Minnesota has an abundance of lakes and river reaches, many of which will require a TMDL study. In an effort to expedite the completion of TMDL projects, the MPCA has decided to construct watershed models. These models have the potential to support the simultaneous development of TMDL studies for multiple listings within a watershed.
This project will guide local implementation planning efforts by identifying water quality goals, strategies, and implementation milestones in the Cedar River Watershed. This watershed includes 435 square miles in major portions of Mower, Freeborn and Dodge Counties, and incudes the regional center of Austin. A Watershed Restoration and Protection Strategy (WRAPS) report will be completed by this effort.
This project is for the Cedar River Watershed, which includes major portions of Mower, Freeborn and Dodge Counties in southern Minnesota. The scope of this project is to complete the Total Maximum Daily Load (TMDL) studies for 11 stream reaches with sediment impairments, and 14 stream reaches for bacteria impairments. The major product of this effort will be the final Cedar River TMDL report, which will be submitted to the United States Environmental Protection Agency, and public-noticed by the Minnesota Pollution Control Agency.
There are two main goals of this Cedar Basin HSPF project,
A. Overall development of the HSPF model in the Cedar Basin of Minnesota; and
B. Shell Rock River nutrient, DO , impairment modeling and TMDL completion.
This project will identify and compile existing nitrate data from groundwaters and surface waters in the Lower Mississippi Basin (LMB) generally and focus on the Root River Watershed. The purpose is to investigate the quantity and quality of existing nitrate data, and to organize it for use in comprehensive watershed strategy development (including assessment, TMDL computation and identification and study of nitrate sources and delivery mechanisms).
This project will build upon existing planning and implementation efforts already taken on in the project area. The collection of existing information will be used to complement water information in support of a more successful and sustainable water quality improvement and protection implementation program. This will be achieved by active civic engagement activities throughout Phase I of this project.
This project will support a civic engagement cohort that will be offered in southwest Minnesota to foster partnering and build capacity of local government, organizations, and residents for effective civic engagement in water protection and restoration. This project will also build networks and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection. The cohort will be administered through the Minnesota River Board (MRB), established in 1995 with a goal of focusing water management efforts on the local level.
This project will develop an understanding for how sediment sources change over timescales of individual storm events as well as over the past two centuries. The results will be used by the larger Collaborative for Sediment Source Reduction (CISSR)-Blue Earth research group to establish a sediment budget for the Greater Blue Earth River Basin and understand the effectiveness of various potential mitigation strategies. In addition, these results can be used by MPCA and others to calibrate watershed sediment models.
This project will build network and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection in Southeast Minnesota. The cohort will be administered through the Southeast Minnesota Water Resources Board (SE MN WRB) which is an area wide Joint Powers Board (JPB) established to help improve and protect the water resources of the area through coordinating local water planning efforts. This JPB has successfully administered water quality grants in the past that have positively impacted the water resources of this region.
This project will complete spatial and temporal revisions , recalibration and validation of 7 watershed HSPF models. These fully functioning calibrated validated executable models will simulate hydrology, sediment (sand, silt, and clay), temperature, phosphorus, nitrogen, dissolved oxygen, biochemical oxygen demand, and algae at the 12-digit HUC subbasin scale (or finer).
This project will construct, calibrate, and validate an HSPF watershed model for the Zumbro River watershed. The consultant will produce HSPF watershed models that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDLs). The consultant will clearly demonstrate that the models generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen that are consistent with available sets of observed data.
This project will complete an implementation plan, as required by the Minnesota Pollution Control Agency, for the Zumbro River turbidity TMDL project. It will also revise the Zumbro River Watershed Management Plan (completed 2007) to ensure it continues to reflect local needs, incorporates new information, and develops more effective linkages with related local, state and federal government programs.
This project will develop a watershed wide Total Maximum Daily Load (TMDL) study and River Eutrophication Standard (RES) TMDL report for water quality impairments in the Des Moines River basin, which includes the Des Moines River Headwaters, Lower Des Moines River, and East Fork Des Moines River watersheds.
The goal of this project is to construct, calibrate, and validate a Hydrological Simulation Program FORTRAN (HSPF) model for Minnesota portions of the Des Moines River watershed.
This project determines ambient background per- and polyfluoroalkyl substance (PFAS) levels in urban and non-urban soils. This information will help Minnesota develop management strategies for PFAS contaminated soils.
The goal of this protect is to protect the water quality of the Mississippi River at Winona, MN through the installation of a downtown Winona parking lot rain garden.
The goal of this project is to create a contact strategy for community/landowner opportunities, obstacles, and opinions on land management and water quality that will result in the identification of restoration and protection strategies for the East Fork Des Moines River watershed.
BWSR will administer funding to eligible County projects that provide funds and other assistance to low income property owners to upgrade or replace Noncompliant Septic Systems. BWSR will also manage annual reporting completed by each County.
This project will study the geologic controls on nitrate transport in southeast Minnesota's karst landscape and will also provide datasets for other projects over time.
Get the Lead Out is focused on protecting common loons and wildlife through education and outreach about the danger of lead fishing tackle and promoting lead-free tackle alternatives.
The purpose of this project is to develop a framework to implement best management practices (BMPs) on ditches in headwater areas utilizing a partnership between drainage staff and the Greater Blue Earth River Basin Alliance (GBERBA). By replacing failing side-inlets with an alternative design, we can make strides towards our water quality and water quantity goals. The alternative inlets serve to prevent sediment and phosphorus from washing downstream and the design can also alleviate peak flows by temporarily storing stormwater.
Provide education, outreach and civic engagement necessary for the development of structural and non-structural best management practices needed to improve water quality within the Greater Blue Earth River Basin. General Education will have a regional focus to landowners. Outreach effort will be focused on regional officials, staff and landowners. Civic engagement efforts will have a smaller watershed scale focus with efforts resulting in structural BMPs being placed on the land and non-structural BMPs being adopted. Implementation of structural best management practices on the land.
The project will involve monitoring twelve stream sites and one lake in Jackson County. The stream sites are known to be impaired. The purpose of monitoring in multiple locations is to determine the source of the impairments.
The goal of this project is to construct, calibrate, and validate a watershed model using HSPF. RESPEC will produce a HSPF model that can readily be used to provide information to support conventional parameter TMDLs.
This project will complete spatial and temporal revisions of 6 Hydrologic Simulation Program FORTRAN (HSPF) models, the recalibration and validation of 7 watershed HSPF models, and the revision of the drainage network and point source representation of the Pomme de Terre HSPF model.