This project will obtain spatial and long-term pollutant load information from the Root River watershed in Southeast Minnesota. To accomplish this, the Fillmore Soil and Water Conservation District (SWCD) will assist the MPCA with water quality monitoring and annual pollutant loading calculations. Approximately 25 grab samples will be collected/site/year at 5 sites within the Root River watershed (totaling 125 grab samples/year). Annual load calculations for each site will be determined using the FLUX32 model.
This project will identify and compile existing nitrate data from groundwaters and surface waters in the Lower Mississippi Basin (LMB) generally and focus on the Root River Watershed. The purpose is to investigate the quantity and quality of existing nitrate data, and to organize it for use in comprehensive watershed strategy development (including assessment, TMDL computation and identification and study of nitrate sources and delivery mechanisms).
This project will build network and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection in Southeast Minnesota. The cohort will be administered through the Southeast Minnesota Water Resources Board (SE MN WRB) which is an area wide Joint Powers Board (JPB) established to help improve and protect the water resources of the area through coordinating local water planning efforts. This JPB has successfully administered water quality grants in the past that have positively impacted the water resources of this region.
The goal of this protect is to protect the water quality of the Mississippi River at Winona, MN through the installation of a downtown Winona parking lot rain garden.
BWSR will administer funding to eligible County projects that provide funds and other assistance to low income property owners to upgrade or replace Noncompliant Septic Systems. BWSR will also manage annual reporting completed by each County.
This project will study the geologic controls on nitrate transport in southeast Minnesota's karst landscape and will also provide datasets for other projects over time.
This project will build a working watershed SWAT model that can readily be used by the MPCA to provide information to support conventional parameter TMDLs and to identify critical areas for BMP installation/evaluation that can be supported by the efforts of the local Farmer Led Council as well as other land owners within the Mississippi River-Winona watershed.
Whitewater Watershed Project will work in coordination with Winona County, Root River (Houston County) Soil and Water Conservation District (SWCD), and Wabasha County SWCD to collect water quality and chemistry parameters on eight Minnesota Pollution Control Agency (MPCA) approved stream sites and two lake sites within the Mississippi River Winona/La Crescent watershed during the 2020-2021 sampling season. Parameters to be tested include: TSS, TP, Chloride, CaCO3 (hardness), E. Coli, Chl - a corrected for Pheo, hardness, specific conductance, clarity, temperature, pH, DO.
This project will identify areas for potential Best Management Practice (BMP) placement and identify strategies to strengthen social capacity and effectively engage citizens in development of the upcoming Watershed Restoration and Protection Strategy (WRAPS) report.
This project will address Step 2b in the Watershed approach process and computation of TMDLS for those impaired waters determined to be in need of them.
The Mississippi River Winona/La Crescent (WinLaC) Watershed Restoration and Protection Strategy (WRAPS) Update Project will help local watershed partners prioritize areas of the WinLaC watersheds through watershed monitoring and analysis, inventorying wells and mapping Best Management Practices (BMPs).
This project is for a contract with Emmons & Olivier Resources Inc to develop Total Maximum Daily Loads (TMDLs; a federal clean Water Act requirement) and a Watershed Restoration and Protection Strategy (WRAPS) report for the for Mississippi River - LaCrescent and Winnebago River watersheds.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
The goal of this project is to analyze and document database architecture, platform, table structures, systems and data fields at six Minnesota agencies (Board of Soil and Water Resources, Department of Natural Resources, MN Department of Agriculture, MN Department of Health, Metropolitan Council, and MN Pollution Control Agency) for 30+ databases related to water.
Olmsted SWCD will work in coordination with Fillmore SWCD and Root River (Houston) SWCD to collect water quality and chemistry parameters on 14 Minnesota Pollution Control Agency approved sites within the Root River watershed during the 2018-2019 sampling season.
Parameters to be tested include:TSS, TP, Chloride, CaCO3 (hardness), E. Coli, Chlorophyll A, Specific Conductance, Temp, pH, DO, NO2/NO3.
The Root (HUC 07040008) and Upper Iowa/Mississippi River – Reno (HUC 07060002 and 07060001) watershed Hydrologic Simulation Program – FORTRAN (HSPF) models currently simulate hydrologic and water quality processes through 2015. In order to support work to update the existing WRAPS report, the two HSPF models will be extended through 2021.
The contractor will use the Scenario Application Manager (SAM) tool to build water quality restoration scenarios for the Root River watershed using the Hydrologic Simulation Program FORTRAN (HSPF) model. The SAM tool simulates total suspended solids (TSS) and nitrogen reductions based on implementation of various best management practices.
The purpose of this project is to assess the amount of land in the Root River watershed that is treated by structural best management practices (BMPs); more specifically, Water and Sediment Control Basins. The 2016 Root River Watershed Restoration and Protection Strategy (WRAPS) report recommended reducing sediment loss from upland areas and reducing nitrate loading to streams from runoff. Understanding the location and density of these BMPs will is important for targeting future watershed protection and restoration efforts.
TMDL project in the Root River Watershed that will support surface water assessment, analysis of data, interpretation of southeast Minnesota's karst landscape, stressor identification, TMDL computation, source assessment, and implementation planning.
The goal of this project is to complete the construction, calibration, and validation of an Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Minnesota portions of three watersheds: Root River, Upper Iowa, and Mississippi River-Reno.
The purpose of this effort is to create an educational video that will “bring to life” geo-scientific information related to groundwater movement in southeast Minnesota. This video will be used by the Minnesota Pollution Control Agency (MPCA), Minnesota Department of Agriculture (MDA) and other regional partners to help explain the local geology and related groundwater movement. It is anticipated that the video will be used at meetings and other events related to water resource management and natural resource issues. In addition, three stand alone high resolution graphics will be created.
The goal of this project is to investigate nitrate transport and the sources of nitrate in karst for more effective implementation of best management practices that will reduce nitrate concentrations in ground and surface water.
The WinLaC Prioritization and Public Participation Project will identify priority water quality issues and concerns for the watershed approach in the Mississippi River - Winona and La Crescent watersheds. Information obtained from this project will help develop the Watershed Restoration and Protection Strategy (WRAPS) Update report as well the WinLaC Comprehensive Watershed Management Plan.
This project will produce a final Total Maximum Daily Load (TMDL) report and Watershed Restoration and Projection Strategy (WRAPS) reports for the Winnebago and Mississippi River – La Crescent watersheds including the drafting of public notice versions of the reports, responding to comments during the public notice period and producing the final TMDL and WRAPS reports.
The Zumbro River watershed HSPF model will be refined to include recent data and information as well as evaluate various management scenarios to inform the most effective actions for reducing sediment and nutrient loading and improving water quality. Specifically, to provide the foundation for the Lake Zumbro Phosphorus Total Maximum Daily Load (TMDL).