The grant will use local data to develop stormwater planning options that prioritize, target, and measure the effectiveness of Best Management Practices and allow local city officials to make decisions on stormwater Best management Practices that reduce pollutants in the stormwatershed.
The Pomme de Terre River Association has targeted and identified specific areas and activities required for marked water quality improvement. This project will implement of 16 Water and Sediment Control Basins (WASCOBs), 28 Rain Gardens, 2 Shoreline/ Stream bank stabilization, 10 Waste Pit Closures, 1 Terrace Project, and the enrollment of 1900 acres into conservation practices. These practices in total will directly result in site-specific and watershed-dependent reductions of 17,801 tons of sediment and 17,784 pounds of phosphorous from entering surface waters yearly in the watershed.
This project will accelerate production of County Geologic Atlases (part A). An atlas is a set of geologic maps and associated databases for a county that facilitate informed management of natural resources, especially water and minerals.
The Lower Shakopee Creek has proportionally higher pollutant contributions than any other tributary in the Chippewa River Watershed, and lower than average implementation of conservation practices. Establishing relationships with agricultural landowners is critical for overcoming barriers to participation. In order to make measurable pollutant reductions, Chippewa River Watershed Project staff will increase one-to-one landowner contacts, program promotion, and Best Management Practice site identification.
The Aitkin County Soil and Water Conservation District will partner with the Minnesota Pollution Control Agency and local volunteers to conduct water quality monitoring in high priority areas of the Upper Mississippi River Grand Rapids Watershed. Five lakes will be sampled, including Savanna, Shumway, Loon, Hay, and Washburn. Through this effort we will obtain information that will be useful in assessing the health of this watershed. This will be valuable in planning for future restoration and protection efforts that will ensure good water and environmental quality for Aitkin County.
Complete section 3 of Watershed Restoration and Protection Strategy (WRAPS) document for the Cannon and Zumbro Watersheds and provide input to sections 1 and 2.
The goal of the Chippewa River Watershed Protection project is to protect unimpaired areas of the watershed. This will be accomplished through education and outreach with landowners and through implementation of best management practices.
The Minnesota DNR and the Minnesota Forest Resources Council work with forest landowners, managers and loggers to implement a set of voluntary sustainable forest management guidelines that include water quality best management practices (BMPs) to ensure sustainable habitat, clean water, and productive forest soils, all contributing to healthy watersheds. This project will monitor the implementation of these forest management guidelines and BMPs on forested watersheds in MN.
Minnesota’s use of groundwater has increased over the last two decades. An increasing reliance on groundwater may not be a sustainable path for continued economic growth and development. The DNR is establishing three pilot groundwater management areas (GWMA) to help improve groundwater appropriation decisions and help groundwater users better understand and plan for future groundwater needs associated with economic development.
The goal of this project is to continue and finalize Hydrological Simulation Program FORTRAN (HSPF) watershed model construction and complete the calibration/validation process for the Minnesota River–Headwaters and Lac qui Parle watersheds that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) reports.
Construct, calibrate and validate 3 Hydrologic Simulation Program FORTRAN (HSPF) watershed models for the St Louis, Cloquet, and Nemadji River Watersheds.
Construct, calibrate, and validate three Hydrologic Simulation Program FORTRAN (HSPF) watershed models that can readily be used to provide information to support conventional parameter Total Maximum Daily Loads (TMDLs).
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models simulate sediment erosion and transport, however these models periodically need to be adjusted to be consistent with the most recent sources of information regarding sediment distribution and loading rates. The goal of this project is to refine the sediment source partitioning and simulation in the Minnesota River basin using all relevant available sources of information.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.
Lac qui Parle-Yellow Bank Watershed District will collect water chemistry samples from the three lakes and twenty-nine stream sites in the Lac qui Parle and Minnesota Headwaters watersheds following the MPCA’s Intensive Watershed Monitoring (IWM) plan for lakes and streams. Eleven samples will be collected at each lake from May through September during 2015 and 2016. Eleven samples will be collected at each of the twenty-nine stream sites in 2015. In addition, sixteen samples at each stream site will be collected in 2015 and 2016 following the E.
The sixth largest fresh water lake in the United States, Lake of the Woods has sustained significant shoreline erosion through a number of high water events, high inflows from the Rainy River, sustained strong NW winds, and erodible soils on the southern shore. This project implements strategies to protect and enhance private shoreline on the lake by addressing long-term shoreline management.
The Lake of the Woods (LOW) Total Maximum Daily Load (TMDL) study will: (1) identify water quality goals for the Minnesota portions of the LOW/Rainy River Watershed; (2) recommend nutrient allocations to achieve TMDLs where waters do not meet standards; and (3) provide opportunities for stakeholders to engage in the process of watershed-management planning to adopt protection and restoration strategies. The project will include existing in-lake and watershed model updates, TMDL component development, restoration plan development, and public participation.
The Minnesota Pollution Control Agency (MPCA) is a co-sponsor and assists with a portion of the financial support for the International Rainy River-Lake of the Woods Watershed Forum.
This project will gather watershed data necessary for the development of a Watershed Restoration and Protection Strategy (WRAPS) report to maintain and improve water quality for the St Louis River Watershed.
This project will implement five stormwater control BMPs and educate watershed landowners regarding proper management of stormwater control. These projects will serve to change behavior and perceptions of how stormwater may be managed, and demonstrate how easy changes may have a positive impact on land stewardship and water quality protection. 100 rain barrels will be distributed at a reduced cost to critical landowners.
The goal of this project is to establish a framework that the local government can use to guide their involvement as the UMR Watershed Project progresses over the next four years. This will result in strategies to protect or restore the waters in this watershed. These strategies will be used as the basis for making informed local water quality and land use planning decisions, as well as development of grant applications to implement the restoration and protection of waters in the UMR watershed.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds. Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support. Biological and Water Chemistry Stream Monitoring: Monitoring to assess the conditions of streams in each watershed.
The goal of this project is to analyze and document database architecture, platform, table structures, systems and data fields at six Minnesota agencies (Board of Soil and Water Resources, Department of Natural Resources, MN Department of Agriculture, MN Department of Health, Metropolitan Council, and MN Pollution Control Agency) for 30+ databases related to water.
Within an 11-county area in southeastern Minnesota, two Nutrient Management Specialists will work directly with producers to reduce nitrogen, phosphorus, and fecal coliform runoff into surface and ground water in the region and the Mississippi River. The specialists will help producers create or revise nutrient management plans, implement Best Management Practices for manure and fertilizer use, and set up on-farm demonstration projects to support farmer-to-farmer learning.
This Initiative is a nine-year plan to take a systematic approach to inventory and analyze all Public Waters within the County. Phase 1 includes identifying areas of concern through GIS analysis of current landuse along Public Waters, and the development of a database of non-compliant landowners which will be updated and maintained. Once landowners have been identified they will receive a joint letter and map stating that they may not be in compliance.
This project will be the first of its kind Civic Engagement Cohort that focusses its efforts in an individual watershed. The Otter Tail River Watershed is scheduled to start a Watershed Restoration and Protection Strategy (WRAPS) in 2016 and as a component of that project, the cohort will provide the civic engagement requirement. The cohort will be comprised of 25-30 individuals located throughout the watershed who represent a broad spectrum of resource managers and citizens who are familiar with water quality and watershed management.
The study will assess existing phosphorus data records and create a model to explain phosphorus loading into the Red River of the North. Studies have found that the majority of nutrient loading in the stream located in agricultural areas occurs with sediment loading since nutrients are typically bound to sediment particles.
This program will develop and implement stormwater management plans and shoreline restoration projects with community partners. Community partners for this program will include but are not limited to: non-profits, businesses, and faith organizations within the Rainy River-Baudette watershed.
The goal of this project is to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data for the benefit of water quality in the Red River Basin.
The Aitkin County Soil and Water Conservation District will partner with local lake associations and other eligible community partners to reduce the impacts of storm water runoff and retain water on the land. We will implement a mini-grant program that will install rain gardens and native vegetation buffers along shorelines using deep-rooted native vegetation that will filter runoff, promote infiltration, and control stormwater runoff and soil erosion.
The goal of this project is to construct, calibrate and validate a watershed model using Hydologic Simulation Program FORTRAN (HSPF) for the Roseau River Watershed.
Approximately 70 percent of all Minnesotans rely on groundwater as their primary source of drinking water. Wells used for drinking water must be properly sealed when removed from service to protect both public health and Minnesota’s invaluable groundwater resources. The Minnesota Department of Health protects both public health and groundwater by assuring the proper sealing of unused wells.
Clean Water funds are being provided to well owners as a 50% cost-share assistance for sealing unused public water-supply wells.
Well-managed forests deliver the optimal quantity and quality of surface runoff and groundwater water recharge possible. This Forest Management and outreach program will help protect, preserve, and improve water quality and related water resources by hiring a Regional Clean Water Forester. The Forester will help LGUs in Technical Service Areas (TSA) 3 and 8 increase installation of water quality-related forestry practices.
The goal of phase 1 of this project is primarily to support organizational planning and coordination among project partners, forming and training a civic engagement team, creating a civic engagement strategic plan, holding two watershed kick off meetings and gathering and summarizing available water quality data. The completion of phase 1 will help provide significant momentum towards the completion of the future phases of the Watershed Restoration and Protection Strategy (WRAPS) process.