Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
Provides grants to Soil and Water Conservation Districts that focuses on increasing capacity to address four resource concern areas?Soil Erosion, Riparian Zone Management, Water Storage and Treatment, and Excess Nutrients.
This project will develop a watershed wide Total Maximum Daily Load (TMDL) study and River Eutrophication Standard (RES) TMDL report for water quality impairments in the Des Moines River basin, which includes the Des Moines River Headwaters, Lower Des Moines River, and East Fork Des Moines River watersheds.
This project will provide cost-share funds to landowners in vulnerable groundwater areas for the incorporation of cover crops in their crop rotation and to provide education related to nitrogen BMPs through field trials and Nutrient Management Plans. An anticipated 100 producers in highly vulnerable areas, will plant 3,000 acres of cover crops resulting in preventing potentially 19,800 pounds of nitrate from leaching into groundwater.
The Minnesota DNR and the Minnesota Forest Resources Council work with forest landowners, managers and loggers to implement a set of voluntary sustainable forest management guidelines that include water quality best management practices (BMPs) to ensure sustainable habitat, clean water, and productive forest soils, all contributing to healthy watersheds. This project will monitor the implementation of these forest management guidelines and BMPs on forested watersheds in MN.
Previous research by the St. Croix Watershed Research Station (SCWRS) has identified lake physics (temperature and oxygen) and nutrient recycling (nitrogen and phosphorus) as key drivers of lake algal blooms. SCWRS will conduct monitoring consistent with the prior research efforts by re-deploying three moored buoys to collect data throughout the 2019 ice-free season, including surface water samples. Additionally, SCWRS will deploy an in situ flourometer to measure total algae and cyanobacteria concentrations and will collect and analyze cyanobacterial toxins.
This project is to conduct water chemistry monitoring at two subwatershed sites and two major watershed sites based on flow conditions, targeting runoff events using protocols defined in the Watershed Pollutant Load Monitoring Network (WPLMN) Standard Operating Procedures and Guidance. The data collected will be submitted to Minnesota Pollution Control Agency (MPCA) and used for calculating pollutant loads. This loading information, in turn, will be used at both the state and local level to guide policy and strategies for the restoration and protection of Minnesota’s waters.
The Lake of the Woods (LOW) Total Maximum Daily Load (TMDL) study will: (1) identify water quality goals for the Minnesota portions of the LOW/Rainy River Watershed; (2) recommend nutrient allocations to achieve TMDLs where waters do not meet standards; and (3) provide opportunities for stakeholders to engage in the process of watershed-management planning to adopt protection and restoration strategies. The project will include existing in-lake and watershed model updates, TMDL component development, restoration plan development, and public participation.
This purpose of this project is to evaluate the conditions of eight streams in the Cedar River Watershed and one site on the Wapsipinicon River. Monitoring will take place for two years. Mower Soil and Water Conservation District staff will collect samples following Minnesota Pollution Control Agency (MPCA) Intensive Watershed Monitoring (IWM) sample collection protocols and will organize and review all field and laboratory data, along with field notes and photos.
The Rapid River Watershed Restoration and Protection Strategy (WRAPS) project will result in the development of the restoration and protection strategies for the watershed and engage the local stakeholders in the practices of watershed management. This project will also develop Total Maximum Daily Loads (TMDLs) for impaired waters.
This project is for Minnesota Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, to work with regional partners to promote understanding and protection of watersheds, and to organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
The purpose of this project is to reduce phosphorus entering South Heron Lake (SHL), which currently does not meet state standards for this water pollutant. Efforts will be focused on Jackson County Judicial Ditch 3 (JD3), which has been petitioned to the HLWD for improvement. JD3 drains 52 percent of the SHL watershed, highlighting its importance in making meaningful progress towards water pollution reduction. The practices include eleven water and sediment control basins and a 10-acre storage and treatment wetland restoration.
The purpose of this effort is to create an educational video that will “bring to life” geo-scientific information related to groundwater movement in southeast Minnesota. This video will be used by the Minnesota Pollution Control Agency (MPCA), Minnesota Department of Agriculture (MDA) and other regional partners to help explain the local geology and related groundwater movement. It is anticipated that the video will be used at meetings and other events related to water resource management and natural resource issues. In addition, three stand alone high resolution graphics will be created.
This project will build off the success of the additional geographic information system (GIS) and water planning expertise the TSA8 added in 2016 to provide consistent mapping, water planning assistance and training to partners. This project will help soil and water conservation districts prepare for the 1W1P process before the planning starts. A unified protection methodology is essential for the 1W1P process to be successful. This project will include: unified GIS mapping and protection model for all nine counties respectively.
This project is the second phase of updating the Two Rivers watershed Hydrologic Simulation Program FORTRAN (HSPF) model. This project includes calibration of the model and including a proposed impoundment in the model. An analysis of possible downstream water quality impacts will also be done.
The primary objective of this project is to extend the simulation period of the Two Rivers Watershed Hydrological Simulation Program FORTRAN (HSPF) model through 2017 to support future simulation and assessment of the planned Klondike impoundment.
This project will educate and assist landowners to seal unused wells by providing cost-share funds of 50% up to $1,000 per well located in highly vulnerable groundwater areas in 10 southeast Minnesota counties. Groundwater is the primary source of drinking water and due to the karst geology in SE MN groundwater is more vulnerable to contamination.
In previous phases of work, a Hydrologic Simulation Program FORTRAN (HSPF) model of the Zumbro River Watershed was developed to simulate hydrology and water quality for the 1995-2009 simulation period (Phase I), applied to evaluate various management scenarios for reducing sediment and nutrient loading (Phase II), and used to develop Total Maximum Daily Loads (TMDLs) for impaired stream segments and inform development of a nutrient TMDL for Rice Lake (Phase III).