The University of Minnesota will develop effective interview questions for community watershed assessments in the Rainy River basin and provide assistance in understanding the data collected through community interviews.
The Rainy River Basin WPLMN Sampling Program will focus on watershed load monitoring in the Big Fork River, Little Fork River, Rainy River-Rainy Lake, and Vermilion River watersheds. Four total staff will work on various portions of this agreement. The main objective is for one lead sampler and one backup sampler to collect water chemistry and field parameters for eight (8) sites, annually at various flows, especially peak flows, and utilize that data to determine the amount of pollutant load into each stream system.
This project will meet the following goals: develop, implement, and evaluate the impacts civic engagement outcomes for the Rainy River Headwaters and the Cloquet watersheds; create a citizen understanding of the Watershed Restoration & Protection Strategy (WRAPS) process and the role that citizens, lake associations, institutions of higher education, and other stakeholders can play in attaining water quality restoration and protection; provide opportunities for citizens and stakeholders to assist local partners and state agencies in developing priorities for projects to accomplish resto
The purpose of the grant is to increase and enhance the understanding of the American Indian Ojibwe language and culture to ensure positive reinformcement of the self image and sense of identity four our American Indian Ojibwe people: To engage American Indian Ojibwe language and culture in our communities.
The goal of this project is the development of a model of wild rice population dynamics, using RAMAS software, which mimics natural variability of population levels and calculates the probability of population extinction.
The overall goal of this project is to perform water quality monitoring and load calculation duties to accomplish Minnesota Pollution Control Agency (MPCA) Watershed Pollutant Load Monitoring Network (WPLMN) monitoring efforts at the seven sites within the Redwood and Cottonwood River watersheds as well as the Minnesota River site near Morton. To accomplish this goal the requested funds will provide for technician’s time, mileage, lab costs, supplies, as well as equipment calibration and upkeep.
Partial funding to reconstruct parking lots, driveways, parking lot lighting, boat ramp improvements and associated storm water improvements at the Hyland-Bush-Anderson Lakes Regional Park Reserve.
Renovate Rice Creek Maintenance Shop and campground support facility to improve maintenance and operations efficiencies and improve visitor experience in park.
Impaired waters in the Red Lake River 1W1P are categorized into management classes to target impaired waters that are closest to meeting water quality standards and to protect unimpaired waters close to becoming impaired. Management areas targeted in 2018 and 2019 include the Little Black River, Black River, County Ditch 96, the Red Lake River between Thief River and Crookston, Burnham Creek, and Grand Marais Creek.
This project is for Minnesota Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, to work with regional partners to promote understanding and protection of watersheds, and to organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
This project is for Minnesota Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, to work with regional partners to promote understanding and protection of watersheds, and to organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
The International Water Institute (IWI) will monitor 42 sites (3 basin, 12 major watershed, and 27 subwatershed) in the Red River and Upper Mississippi River Basins intensively during the contract period. There will also be 5 sites in the Red River Basin where mercury samples will be collected and sent to Minnesota Department of Health for analysis. The IWI will collect water samples across the range of flow conditions targeting sample collection at times of moderate to high flow.
The purpose of this project is to improve understanding of primary productivity in the Red River and the diversity and population structure of the algal communities occurring along the river system. This will be accomplished through taxonomic identification of periphyton and phytoplankton assemblages necessary for characterizing responses to nutrient gradients along the Red River of the North.
The goal of this project is to construct, calibrate, and validate a watershed model using the Hydrological Simulation Program FORTRAN (HSPF) model for the Upper/Lower Red Lake Watershed. The contractor will produce an HSPF model that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) Studies. The model will generate predicted output for hydrology, sediment, nutrients, and dissolved oxygen that is consistent with observed data.
Supplement design and construction cost for the redevelopment of the existing playground in the Upper Afton section of Battle Creek Regional Park consisting of demolition, grading, utilities, trails, lighting, construction, landscaping, site amenities, signage, new playground container and playground equipment, and safety surfacing The plan is to improve accessibility and play value.
The Redwood River watershed is one of the last remaining watersheds to complete Cycle I of the Watershed Restoration & Protections Strategies (WRAPS) process. The scope of this project upon completion is have two reports developed; a Watershed Restoration and Protection Strategies report and a Total Maximum Daily Load (TMDL) for the entire watershed.