This project will complete a Total Maximum Daily Load (TMDL) study for the impaired reaches of the Snake River Basin. The project includes development of a Generalized Watershed Loading Function (GWLF) model for nutrient sources and Total Suspended Sediment (TSS), a spreadsheet version of a BATHTUB model of lake response for four lakes, and a bacteria source assessment. Wenck will also provide all stream channel data as a spreadsheet and locational database.
The goal of this project is to extend, calibrate, and validate the existing Hydrological Simulation Program FORTRAN (HSPF) model for the Snake River Watershed in the Red River Basin. The contractor will produce an HSPF model that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) Studies. The model will generate predicted output for hydrology, sediment, nutrients, and dissolved oxygen that is consistent with observed data.
The goal of this project is to utilize the information and data collected in the Phase I project to develop a Watershed Restoration and Protection Strategy (WRAPS) Report and Total Maximum Daily Load (TMDL) Study that will address water quality impairments and maintain or improve water quality throughout the Snake-Middle River Watershed. The Phase II project will allocate pollutant reductions goals, and prioritize and identify implementation strategies to maintain or improve water quality in key streams in the watershed.
The goal of this project is to utilize the information and data collected in the Phase 1 project to develop a Watershed Restoration and Protection Strategy (WRAPS) report and Total Maximum Daily Load (TMDL) study that will address water quality impairments and maintain or improve water quality throughout the Snake-Middle River Watershed. The Phase 2 project will allocate pollutant reductions goals and prioritize and identify implementation strategies to maintain or improve water quality in key streams in the watershed.
The goal of this project is to develop and implement a multiagency tracking framework that will help clarify connections between Clean Water Funds invested, actions taken and clean water outcomes achieved.
This project will augment data collection efforts for the Lake Superior South, Cloquet, St. Louis River, and Duluth Urban Watershed Restoration and Protection Strategy (WRAPS) projects. Activities include: attaining datasets for watershed stressors and geomorphic conditions, water quality gap monitoring, and civic engagement. The Minnesota Pollution Control Agency has been collaborating with the South St. Louis Soil and Water Conservation District (SWCD) to complete WRAPS related technical and civic engagement work in the Lake Superior basin for the past five years.
This project seeks to inventory twenty registered feedlots identified as having an Unpermitted Liquid Manure Storage Area. Specifically, this inventory would include offering cost-share for soils investigations. These feedlots are located in three townships that have also been identified as having groundwater that is vulnerable to nutrient pollution, necessitating a need for nitrate testing per MN Department of Agriculture. These townships also house the vast majority of remaining unpermitted Liquid Manure Storage Areas in the County.
Working with the Somali Museum of Minnesota, MNHS is developing an exhibit that will help Minnesotans understand this recent immigrant community. The exhibit will showcase cultural traditions and material culture of Somalia, cover the immigrant experience in the journey to Minnesota and will review the accomplishments and cultural adaptations Somali people have made since making Minnesota home.
Well Construction: After grantee pays evaluation and selects well location, drill well. Cost share to be used to evaluate potential to install sentintel monitoring well upgradient of City's well field.