The goal of this project is to complete Total Maximum Daily Load (TMDL) modeling on North and South Heron Lake and incorporate the results into the Des Moines River Watershed TMDL report.
Through this project, the North Cannon River Watershed Management Organization (NCRWMO) works cooperatively with the Dakota Soil and Water Conservation District (DSWCD) and landowners to establish best management practices (BMPs) that reduce runoff and decrease the movement of sediment, nutrients, and pollutants into the Cannon River and its tributaries including, Trout Brook, Chub Creek, and Pine Creek.
This project will collect water quality data for 31 sites (22 lakes and 9 stream sites) within the Rainy River Headwaters, Cloquet, and Vermilion major watersheds as part of the 10-year cycle for monitoring Minnesota's waters. Due to the large number and geographic extent of monitoring sites, North St. Louis SWCD (NSLSWCD) is subcontracting with Lake County SWCD and Koochiching County SWCD. An intern from the Vermilion Community College (VCC) Water Resources Program will be hired to conduct monitoring of 4 stream sites and 3 lake sites located between Ely and Virginia.
The North Fork Crow River Watershed District will develop an inventory and inspection database for 103E ditches under their drainage authority. The district will acquire a database software solution to conduct field inspections and to track ditch maintenance projects throughout the district. This software will be used to facilitate statutory compliance including developing a process for completing annual inspection and reporting requirements.
This project will replace a conventional 32 foot wide neighborhood street with a narrowed 22 -24 foot wide street that will include rain gardens, sidewalk, and boulevard trees. North St. Paul is using the term Living Streets to describe a new type of street that will eventually replace most of the city's existing streets. Living streets are narrower and have less pavement than existing streets. Reducing the width of existing streets reduces construction costs and assessments to residents. It allows room for the installation of rainwater gardens to treat stormwater.
This contract will be to initiate the second cycle of the North Fork Crow River Watershed Restoration and Protection Strategies (WRAPS) development. The project will provide needed information and analysis to make sure that implementation strategies are well thought out and targeted. The result will be a framework for civic and citizen engagement and communication, which will contribute to long-term public participation in surface water protection and restoration activities throughout the watershed.
The goal of this project is to add dual endpoints to the turbidity section of the North Fork Crow TMDL so that it addresses the proposed TSS standards.
The Vermillion River Watershed Joint Powers Organization (VRWJPO), in partnership with the City of Lakeville and Dakota County, are working to systematically address Total Suspended Solids (TSS) sources contributing to the North Creek tributary of the Vermillion River (North Creek) through use of a prioritized, targeted, and measurable subwatershed assessment approach to identify and implement the most cost- effective and feasible projects to address North Creek's TSS, fish, and macroinvertebrate impairments.
The Minnesota Department of Natural Resources will coordinate the collection of high-resolution elevation data for northeastern portion of Minnesota using Light Detection and Ranging (LIDAR) systems. The geographic area of the work includes Minnesota counties of Carlton, Cook, Lake, and St. Louis Counties and that portion of Koochiching County that comprises Voyageurs National Park.
The MWMO , City of Minneapolis and Minneapolis Park & Recreation Board are partnering to implement stormwater projects that reduce pollutant loading to the Mississippi River, reduce flooding and improve ecological function. Three regional Best Management Practices are being proposed in the northern portion of Columbia Golf Course, in Northeast Minneapolis, capturing and treating stormwater from 600-acres of mixed urban landuse.
The overall project goal is to develop complementary (same year) physical, biological, and chemical data sets for eight agency-prioritized lakes and three streams in NE Minnesota to incorporate into the overall state database for MPCA assessment purposes as well as research purposes.
This project will improve the water quality of Northwood Lake by treating storm water runoff from over 110 acres of currently untreated urban land. The project includes the installation of a variety of practices at two different locations adjacent to the lake that will maximize storm water treatment while conserving drinking water and preserving park land.
The Northwood Lake Improvement Project will treat storm water runoff from over 110 acres of currently untreated urban land through a variety of practices at two different locations adjacent to the lake. Northwood Lake is an impoundment of the North Branch of Bassett Creek located in the City of New Hope within the Bassett Creek Watershed Management Commission (BCWMC). Northwood Lake is a shallow lake with a fully developed watershed of 1,341 acres that provides very little stormwater treatment.
The Rum River is designated as a 'Wild and Scenic River' and is the major watershed in Mille Lacs County. Maintaining and protecting its water quality is a significant concern. The Clean Water Fund grant will result in the timely and successful implementation of ten nutrient management plans resulting in land management changes with an estimated average reduction of 30 pounds of Phosphorus and 40 pounds of Nitrogen per year on almost 2,000 acres.
Regionally, nitrate nitrogen concentrations are continuing to increase in both surface water and ground water based on monitoring data. The increasing trends are thought to be attributable to over application of manure and commercial nutrients on row-cropped fields. In order for nitrate concentrations to decrease, nutrient management is needed throughout the basin. Two nutrient management specialists will assist landowners in the eleven-county Southeast Minnesota Area with writing nutrient management plans and implementing conservation practices for manure and fertilizer use.
Within an 11-county area in southeastern Minnesota, two Nutrient Management Specialists will work directly with producers to reduce nitrogen, phosphorus, and fecal coliform runoff into surface and ground water in the region and the Mississippi River. The specialists will help producers create or revise nutrient management plans, implement Best Management Practices for manure and fertilizer use, and set up on-farm demonstration projects to support farmer-to-farmer learning.
This project will assist farmers across Southeast Minnesota by providing guidance on management of nutrient sources including livestock manure, commercial fertilizers, and legumes. This project is important because excess nutrients and bacteria are causing negative impacts to the quality of waters. Two Nutrient Management Specialists will work one-on-one with farmers to develop 70 plans each year. Over time, it is anticipated that the number of new nutrient management plans will decrease as acres with plans increase.
The goal of this project is to refine the nutrient and algae simulation in the Minnesota River basin using all relevant available sources of information. The outcome of this work order is a revised Hydrological Simulation Program – FORTRAN (HSPF) watershed model application for the Minnesota River basin that correctly represents nutrient sources and algae.
Oak Glen Creek is immediately upstream of drinking water intakes for Minneapolis and St. Paul. When it rains, the runoff along Oak Glen Creek runs down bare soil cliffs that are 20 to 30 feet high, causing large amounts of sediment to erode into the creek and make its way to the Mississippi River. This corridor stabilization project will address multiple local and regional priorities and will benefit both cities source water projection efforts.
This Oak Glen Creek stormwater pond expansion and enhancement using an iron enhanced sand filter (IESF) is a partnership between the Anoka Conservation District (ACD) and a private company to protect a downstream corridor stabilization and improve the quality of stormwater discharged to the Mississippi River. Very little stormwater infrastructure currently exists in the 573 acre Oak Glen Creek subwatershed, and it discharges 147,519 pounds of sediment and 353 pounds of phosphorus to the Mississippi River annually.
Little Lake Johanna is not meeting state water quality standards due to excessive phosphorus. The Rice Creek Watershed District, in partnership with the City of Roseville, will improve the water quality of stormwater runoff into Little Lake Johanna through installation of an iron-enhanced sand filter. The Oasis Pond Iron-Enhanced Sand Filter Project will annually remove approximately 34 pounds of phosphorus from runoff to Little Lake Johanna annually. This is equal to nearly 20% of the needed load reduction as established by the Southwest Urban Lakes Total Maximum Daily Load Study.
Olmsted SWCD will work in coordination with Fillmore SWCD and Root River (Houston) SWCD to collect water quality and chemistry parameters on 14 Minnesota Pollution Control Agency approved sites within the Root River watershed during the 2018-2019 sampling season.
Parameters to be tested include:TSS, TP, Chloride, CaCO3 (hardness), E. Coli, Chlorophyll A, Specific Conductance, Temp, pH, DO, NO2/NO3.
This project will establish a web-based permitting system to capture essential water appropriation information. The system will include an online permit application process for water use and other permits. The online system will streamline the permitting process for applicants and significantly reduce staff time correcting and managing permit applications and water use reports that are incomplete or have incorrectly calculated permit fees. The use of technology in the application and reporting process will also eliminate staff time needed to enter data and scan and route documents.
The ambient groundwater monitoring network collects samples for contaminants of emerging concern such as pharmaceuticals, insect repellents, bisphenol A, and alkylphenol detergent breakdown products. This project will fill a data gap by collecting water samples for organophosphate flame retardants and PFAS. Samples will be collected from 135 wells and tested for organophosphate flame retardants and selected wells for PFAS.
Residents of Oronoco historically depended on individual wells for all of their potable water needs. Most of these wells are shallow or sand point types and may have elevated levels of nitrates.The City of Oronoco recently completed the first phase of a municipal water system project that will lessen the citizen dependence on individual wells. As residents are connected to the municipal system their existing wells are no longer needed. The wells should be sealed to prevent possible contamination of the city wells.Grant funds will be used to assist with the cost of sealing these wells.