MSU-Mankato Water Resources Center in the Mankato area will provide conventional pollutant monitoring at the following sites: Beauford Ditch, Big Cobb River, Blue Earth River, Le Sueur River (3), Little Cobb River, Minnesota River (2), Watonwan River.
This project will support updates to the Draft Bald Eagle Lake TMDL. The updates will address comments received during the public comment period. The comments resulted in the development of individual Wasteload Allocations for stormwater sources in the Bald Eagle Lake watershed.
The "Bigfork River Target Watershed Assessment – Lake of the Woods & Koochiching Soil and Water Conservation Districts" Project focuses on collecting water chemistry and field parameters at Bear River, Big Fork River (4 sites), Caldwell Brook and Sturgeon River. The project will support the biological assessments being completed by MPCA staff for this Target Watershed Assessment. This work will also train and develop Koochiching SWCD staff to enable them to continue water quality monitoring in the Rainy River Basin.
This project will utilize a systematic approach to identify principal sources, or “hot-spots”, of sediment contributions and work with individual landowners, county drainage officials, and municipalities to coordinate and implement critical Best Management Practices (BMP’s), establish demonstration sites, and provide education and outreach efforts. This project will also establish baseline watershed data with the addition of site specific information, and determine high priority watersheds. Appropriate practices will be identified and mapped utilizing GPS and GIS equipment and software.
This project addresses the identified need for an Implementation Plan that provides an overall roadmap for the effort it will take to meet the Carnelian Marine St. Croix Multi-Lakes Total Maximum Daily Load (TMDL). An Implementation Plan will be developed, with involvement of the Project Partners and stakeholder groups, that sets forth prioritized strategies for attaining the TMDL and a method for tracking the progress of those efforts. The Implementation Plan will be restoration-focused, but will include protection-oriented information/actions as well.
Continued TMDL project to support next phases associated with completion of TMDL's for ten lakes in the Carnelian Marine Saint Croix Watershed District (CMSCWD). Ten lakes are; East Boot, Fish, Goose, Hay, Jellum’s, Long, Loon, Louise, Mud and South Twin.
This monitoring project includes lake and stream monitoring and encompasses all of Cass County, and surrounding counties. The project will obtain water quality data for streams; in 2009, lakeshed assessments indicated that many surface waters throughout the county were data deficient. This project will address the need for sufficient data on a county-wide basis and fulfill the State’s intensive watershed monitoring program goals by obtaining water quality data at targeted lake and stream sites.
This project will include lake and stream monitoring on 23 lakes and 4 streams found within the Leech Lake River and Pine River watersheds in Cass County. The project will be conducted in an effort to gain sufficient data on these data-deficient lake and stream sites within these watersheds. All of the proposed monitoring sites are target sites located in the targeted watersheds for 2012. Cass ESD is partnering with Hubbard SWCD, the Leech Lake Band of Objibwe, and RMB Environmental Laboratories to conduct the fieldwork for this project.
Lake Elmo Park Reserve. Construct trailhead building at winter recreation area, construct new well, septic, site lighting, trails, parking, and related infrastructure, landscaping and amenities.
Chisago County will coordinate up to three community dialogue meetings to inform its water planning decisions. The goal of the meetings will be to provide safe, productive and effective venues for citizens to become authentically engaged in the water planning process. The outcome of this Civic engagement work with Chisago County and their county water planning process will be a more engaged public in the County Water Planning Process.
This project will construct three watershed framework models built using the Hydrologic Simulation Program FORTRAN. These executable models will simulate hydrology at the 12-digit HUC subbasin scale. An HSPF model will be built for each of the following 8-HUC watersheds: Red Lake River (09020303) and the Clearwater River (09020305).
This project will support a civic engagement cohort that will be offered in southwest Minnesota to foster partnering and build capacity of local government, organizations, and residents for effective civic engagement in water protection and restoration. This project will also build networks and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection. The cohort will be administered through the Minnesota River Board (MRB), established in 1995 with a goal of focusing water management efforts on the local level.
This project will support the necessary activities for improving the water quality and biological community by reducing nutrients, sediment levels and managing in-stream habitat within the Goose Creek 10-digit HUC Watershed. This restoration and protection plan will identify pollutant load reduction estimates and management strategies that will be used to obtain the TMDL goals outlined in the plan.
This project will complete a comprehensive study, following a rational, step-wise process of data analysis, response modeling and comparison to the water quality standards, followed by impairment diagnosis, modeling of improvement and protection options, and development of a WRAP Report and Implementation Plan for Sunfish lake, Thompson lake, Pickerel lake, and Rogers lake.
This project will finalize HSPF watershed model construction by incorporating internal phosphorus loading in modeled lakes, run a suite of implementation scenarios and generate a GenScn project containing model output. The consultant will produce HSPF watershed models that can readily be used to provide information to support conventional parameter TMDLs. The consultant will deliver all modeling files for baseline and implementation scenarios and provide a GenScn project containing model output.
This project will develop and execute three point source related scenarios for the Chippewa River watershed using an existing HSPF watershed model. This project will also support the review of the HSPF Modeling Guidance Document.
This project will develop an understanding for how sediment sources change over timescales of individual storm events as well as over the past two centuries. The results will be used by the larger Collaborative for Sediment Source Reduction (CISSR)-Blue Earth research group to establish a sediment budget for the Greater Blue Earth River Basin and understand the effectiveness of various potential mitigation strategies. In addition, these results can be used by MPCA and others to calibrate watershed sediment models.
This project will consist of identifying the candidate causes of biological stress and to develop and implement a public and stakeholder participation process that encourages local ownership of water quality problems and solutions. The Stressor ID process will be done using existing data, identifying data gaps, gathering new data, developing load duration curves, and refinement of the candidate causes. The civic engagement work will include compiling and reviewing existing data on community capacity and assessing that information.
This project will provide Agency staff, local partners and the citizen volunteers with a framework for building local capacity to design civic engagement and communication / outreach efforts. This will contribute to meaningful and sustained public participation in surface water protection and restoration activities throughout the watershed. MPCA staff, local partners and citizen volunteers will also be able to integrate the results of the biophysical and community assessment into strategies for improving water bodies on the MN 303d List of Impaired Waters
This project will build network and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection in Southeast Minnesota. The cohort will be administered through the Southeast Minnesota Water Resources Board (SE MN WRB) which is an area wide Joint Powers Board (JPB) established to help improve and protect the water resources of the area through coordinating local water planning efforts. This JPB has successfully administered water quality grants in the past that have positively impacted the water resources of this region.
This project includes project planning, coordination, stream reconnaissance, and begins the effort towards civic engagement/outreach components of the South Fork Crow River Watershed project. Phase I will focus towards the development of project teams, identifying stakeholders, developing an initial civic engagement strategic plan and conducting limited lake and stream monitoring.
This project will complete an implementation plan, as required by the Minnesota Pollution Control Agency, for the Zumbro River turbidity TMDL project. It will also revise the Zumbro River Watershed Management Plan (completed 2007) to ensure it continues to reflect local needs, incorporates new information, and develops more effective linkages with related local, state and federal government programs.
TMDL project in the Chisago Lakes Lake Improvement District that will develop a watershed based plan and provide strategies for water quality and aquatic ecosystem management, restoration, and protection within Sunrise River Watershed. This project will also aid in understanding the Phosphorus loading to Lake St. Croix.
This project will provide baseline data through water monitoring, recording and analyzing the results of six unassessed rivers/tributaries, three unassessed lakes and five storm water outlets in the city of Mora which drain to the Snake River; promote and implement approved BMP’s.
Lake Elmo Park Reserve. Build Winter Recreation Area including plan winter recreation area, develop recreation facilities to accommodate evening use; install lighting for ski trails and site; develop roads and parking lot; remodel barn for use as a trailhead. A?
This project will collect intermediate watershed load monitoring data on the Bigfork River which is critical to the identification of stressors and assist in defining areas of concern within the Bigfork Watershed and its greater Rainy River Watershed. Itasca County SWCD will closely collaborate with Koochiching SWCD and MPCA on this project.
BWSR will administer funding to eligible County projects that provide funds and other assistance to low income property owners to upgrade or replace Noncompliant Septic Systems. BWSR will also manage annual reporting completed by each County.
This project involves the water quality monitoring of, and data analysis for four major watersheds (8-digit Hydrologic Unit Codes) in the Rainy River Basin. This monitoring will assist in providing the water chemistry data needed to calculate annual pollutant loads for the Major Watershed Pollutant Load Monitoring Network (MWPLMN) and provide short term data sets of select parameters to other Agency programs.
This project will continue to develop, and calibrate/validate the hydrology of an HSPF watershed model for the Thief River watershed. The consultant will add representation of point source discharges to the model. The consultant will compile flow data for the purposes of calibration and validation. An initial hydrologic calibration will be performed and submitted for approval. The consultant will produce an HSPF watershed model that can readily be used to provide information to support conventional parameter TMDLs.
The Koochiching County SWCD staff will collect water chemistry and field parameters at specific times to determine amount of contaminant load into each stream. These sites will coincide with locations where stream flow data is also being collected. This project will focus on watershed load monitoring in both the Big Fork and Little Fork River watersheds.
This project will provide monitoring of four of the major watersheds (8-digit Hydrologic Unit Codes) in the western part of the Rainy River Basin. Staff from the Lake of the Woods SWCD will conduct water quality sampling, review, manage and provide collected data to the Minnesota Pollution Control Agency (MPCA).
This project will provide information about the amount and sources of phosphorous flowing into Lake St Croix by implementing additional water quality monitoring and reduce the amount of phosphorous flowing into Lake St Croix by implementing phosphorous reduction activities. The St Croix River Association (SCRA) will coordinate with the St. Croix Basin Water Resources Planning Team (Basin Team) on the identification and funding of comprehensive water monitoring and phosphorus reduction activities in the Lake St. Croix portion of the St.
This project supports the planning, coordination and civic engagement/outreach components of the Leech Lake River Major Watershed project. Phase 1 will focus towards the development of project teams, identifying stakeholders, developing an initial civic engagement strategic plan and reviewing current and past watershed project data. Phase II of this project will focus on source assessment, running of watershed modeling scenarios, lake protection planning, stressor identification and the continuation of the Civic Engagement components of the project.
Up to $205,000 to match $1,729,000 of a Federal Transportation Enhancement grant, Transportation Enhancement ARRA funds and Carver County Regional Rail Authority funds for land acquisition, trail design, trail and trailhead construction of 6.9 mile segment of the Dakota Rail Regional Trail. Any remaining funds used to partially finance the match to a $1 million Federal Transportation Enhancement grant to design and construct a trail in Lake Minnewashta Regional Park and a trail underpass of Trunk Highway 41 that links to a City of Chanhassen trail.
This project will support water quality monitoring and data analysis in the Red River Basin. The monitoring will assist in providing water chemistry data needed to calculate annual pollutant loads for the Major Watershed Load Monitoring Program (MWLMP) and provide short term data sets of select parameters to other MPCA programs.