This project proposes to increase the adoption of cover cropping in southwest Minnesota to address issues of loss of diversity and environmental degradation. By generating important information on cover crops,
The Leech Lake Band of Ojibwe is working within the Leech Lake Reservation boundaries to address loss and degradation of aquatic habitat for wild rice and waterfowl. Efforts will include regulating water levels on shallow lakes by controlling beaver activity and conducting periodic water level draw-downs, reseeding of approximately 200 acres of wild rice, and implementing adaptive management based on analysis of wild rice productivity.
With this appropriation, the Minnesota Land Trust plans to protect approximately 500 acres of critical shoreline habitat along Minnesota's lakes, wetlands, rivers, and streams by securing permanent conservation easements and dedicating funds for their perpetual monitoring, management, and enforcement. Lands being considered for permanent protection in this round of funding are located in Becker, Beltrami, Blue Earth, Itasca, Kandiyohi, Lac Qui Parle, Le Sueur, Otter Tail, Pope, and Wabasha counties.
Evaluation of Minnesota raptors, in rehabilitation and free ranging settings, for current or previous exposure to highly pathogenic avian influenza virus to better understand outbreak impacts to raptor populations.
This project will construct, calibrate, and validate three HSPF watershed models. The consultant will produce HSPF models that can readily be used to provide information to support conventional parameter TMDLs. The consultant will clearly demonstrate that these models generate predicted output time series for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
This project will complete the development of two watershed HSPF models for the Mustinka River and Bois de Sioux River watersheds. These calibrated and validated executable models will simulate hydrology at the 12-digit HUC subbasin scale.
To implement recommendations from an HVAC evaluation that will ensure better climate control for the preservation of historic resources documenting Itasca County history.
The goal of this project is to continue and finalize Hydrological Simulation Program FORTRAN (HSPF) watershed model construction and complete the calibration/validation process for the Minnesota River–Headwaters and Lac qui Parle watersheds that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) reports.
This project will construct, calibrate, and validate two Hydrologic Simulation Program FORTRAN (HSPF) watershed models. The consultant will produce HSPF models that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDLs) at the Big Fork River and Little Fork River watersheds.
This project will complete spatial and temporal revisions of 6 Hydrologic Simulation Program FORTRAN (HSPF) models, the recalibration and validation of 7 watershed HSPF models, and the revision of the drainage network and point source representation of the Pomme de Terre HSPF model.
Construct, calibrate and validate 3 Hydrologic Simulation Program FORTRAN (HSPF) watershed models for the St Louis, Cloquet, and Nemadji River Watersheds.
This project will enhance the current program, integrating new invasive carp control and detection methods to monitor and remove invasive carp to avoid establishment in Minnesota.
Minnesota has 15.9 million acres of forest land managed by a variety of county, state and federal agencies, and private landowners for timber production, wildlife habitat, and ecological considerations. Forest managers rely on inventory data to make effective planning and management decisions. Because forests are continually changing through natural and human processes, forest inventory data is periodically updated. However, doing so is an expensive and time-consuming endeavor and, as a result, much of Minnesota’s forest inventory data is currently out of date.
Enhance knowledge of Minnesota's native aquatic plant biodiversity, the backbone of healthy aquatic systems, by delivering data products that support conservation, protection and management for decision-makers and scientists.
Autonomous robots, powered by green hydrogen and solar power, designed to remove weeds in row crop fields can improve agricultural ecosystems with reduced herbicide application and fossil fuel use.
To provide financial support to developing and established regional artists wishing to take advantage of an artist generated or impending concrete opportunity or to provide support for expenses to complete work that will advance the artist’s work or caree
To provide financial support to developing and established regional artists wishing to take advantage of an artist generated or impending concrete opportunity or to provide support for expenses to complete work that will advance the artist’s work or caree