The projects planned for the grant funds focus on essential updates and enhancements to our historic building, ensuring that we can continue to provide a safe, welcoming, and inclusive space for all who visit. The proposed improvements include upgrading our HVAC system, kitchen, and security infrastructure; rebuilding the handicap ramp for improved accessibility; sourcing new patio furniture; and resealing the venue's dance floor. Each of these initiatives is designed to maintain the integrity of our facility while enhancing the experience of our diverse audience.
This project will conduct a 2017 revision of the South Fork Crow River, North Fork Crow River and Sauk River Watershed Hydrological Simulation Program FORTRAN (HSPF) models and review of the Pine River Watershed HSPF model.
The purpose of this project is reduce peak flows in the North Fork of the Crow River through culvert sizing. Culvert sizing will typically result in smaller culverts, which will provide short-term temporary storage within channels and on adjacent lands upstream from road crossings. In addition to reducing peak flow rates, flood damage and downstream erosion, increased sediment and nutrient removal through extended detention time is expected.
This project will support a civic engagement cohort that will be offered in southwest Minnesota to foster partnering and build capacity of local government, organizations, and residents for effective civic engagement in water protection and restoration. This project will also build networks and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection. The cohort will be administered through the Minnesota River Board (MRB), established in 1995 with a goal of focusing water management efforts on the local level.
This project will finalize HSPF watershed model construction by incorporating internal phosphorus loading in modeled lakes, run a suite of implementation scenarios and generate a GenScn project containing model output. The consultant will produce HSPF watershed models that can readily be used to provide information to support conventional parameter TMDLs. The consultant will deliver all modeling files for baseline and implementation scenarios and provide a GenScn project containing model output.
This project will develop and execute three point source related scenarios for the Chippewa River watershed using an existing HSPF watershed model. This project will also support the review of the HSPF Modeling Guidance Document.
This project will complete a pollutant source identification and subwatershed information report and support the development of a Draft Restoration and Protection Plan (RAPP). It will also support the devlopment of a Implementation Plan that will identify target areas for BMP implementation for bacteria reductions.
This project will support the completion of a final draft Total Maximum Daily Load (TMDL) document for the Osakis, Smith and Faille Lakes TMDL and the submittal to EPA for final approval.
The primary focus of this project is the collection of lake core samples to aid in the completion of lake TMDLs for Dean, Malardi & Fountain lakes. This work will enable completing tasks included in the North Fork Crow River Watershed Restoration & Protection Project (WRPP). Additional data collection is needed to update lake response models. This new data will provide a cohesive and comprehensive data collection for Dean, Malardi and Fountain lakes.
Construction of a 6.6 mile bituminous trail along CSAH 35 connecting the cities of Dent and Vergas to the Heart of the Lakes Regional Trail and Maplewood State Park
This project determines ambient background per- and polyfluoroalkyl substance (PFAS) levels in urban and non-urban soils. This information will help Minnesota develop management strategies for PFAS contaminated soils.
We will determine the distribution, relative density, and spatial occupancy patterns of 3 small weasel species in Minnesota to fill key knowledge gaps in weasel distribution and status in Minnesota.