With this appropriation, the Minnesota Land Trust plans to protect approximately 500 acres of critical shoreline habitat along Minnesota's lakes, wetlands, rivers, and streams by securing permanent conservation easements and dedicating funds for their perpetual monitoring, management, and enforcement. Lands being considered for permanent protection in this round of funding are located in Becker, Beltrami, Blue Earth, Itasca, Kandiyohi, Lac Qui Parle, Le Sueur, Otter Tail, Pope, and Wabasha counties.
Evaluation of Minnesota raptors, in rehabilitation and free ranging settings, for current or previous exposure to highly pathogenic avian influenza virus to better understand outbreak impacts to raptor populations.
The Oshki-Filmmakers Project is a series of film workshops and opportunities for the White Earth Ojibwe Reservation. Focusing on Indigenous youth, these workshops bring established Indigenous filmmakers from across our region together with youth artists to share stories and knowledge as our young artists begin to shape their artistic craft. We provide work space and equipment to empower our youth to share their own stories and those of our community for many generations to come.
This project will support construction of three watershed framework models built using the Hydrologic Simulation Program FORTRAN (HSPF). These executable models will simulate hydrology at the subbasin scale. An HSPF model will be built for each of three major watersheds: the Crow River/North Fork Crow River, the South Fork Crow River, and the Sauk River.
This project will support construction of three watershed framework models built using the Hydrologic Simulation Program FORTRAN (HSPF). These executable models will simulate hydrology at the subbasin scale. An HSPF model will be built for each of these major watersheds: Crow Wing River, Redeye River, and Long Prairie River.
This project will construct, calibrate, and validate three HSPF watershed models. The consultant will produce HSPF models that can readily be used to provide information to support conventional parameter TMDLs. The consultant will clearly demonstrate that these models generate predicted output time series for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
This project will finalize HSPF watershed model construction and complete the calibration/validation process for the following three watersheds: North Fork Crow River, South Fork Crow River, and Sauk River.
This project will include water quality monitoring on two rivers and twenty lakes found within the Crow Wing River Watershed. Rivers included are Fishhook and Straight River; lakes included are Mow, Big Bass, 11 CROW WING (MAIN), 11 CROWWING (EAST), Tenth Crow Wing, Third Crow Wing, Fourth Crow Wing, First Crow Wing, Shallow, Deer, Waboose, East Crooked, Middle Crooked, West Crooked, Dead, Ojibway, Upper Twin, Pickerel, Moran, Little Mantrap, Portage. Water quality sampling will be conducted according to Minnesota Pollution Control Agency work plan parameters.
This project will continue HSPF watershed model construction beyond the initial framework development. The consultant will add representation of point source discharges to the model. The consultant will also compile flow data for the purposes of calibration and validation. Finally, an initial hydrologic calibration will be performed and submitted for approval.
This project will complete spatial and temporal revisions of 6 Hydrologic Simulation Program FORTRAN (HSPF) models, the recalibration and validation of 7 watershed HSPF models, and the revision of the drainage network and point source representation of the Pomme de Terre HSPF model.
The goal of this project is to extend the existing HSPF models through 2012 in the Chippewa Watershed (07020005) and Hawk-Yellow Medicine Watershed (07020004) to incorporate recent monitoring data to support current MPCA business needs and sediment source investigations.
The project will investigate why, when, and where different species of harmful algal blooms release toxins into the water using hyperspectral microscopic imaging towards developing early warning remote sensing tools.
The purpose of this project is to identify effective irrigation and nutrient management best management practices and technologies and the barriers that prevent irrigators, producers, and other agricultural partners from adopting them in Otter Tail County. The primary goal is to reduce nitrate in areas where groundwater is susceptible to contamination as mapped by The Minnesota Department of Health by identifying effective BMPs and addressing the barriers to their adoption.
With only 1% of Minnesota’s native prairie remaining, many prairie plant and animal species have dramatically declined. Of the 12 butterfly species native to Minnesota prairies, two species, the Poweshiek skipperling and the Dakota skipper, have already largely disappeared from the state and are proposed for listing under the U.S. Endangered Species Act despite being historically among the most common prairie butterflies and having their historic ranges concentrated in Minnesota.
With only 1% of Minnesota’s native prairie remaining, many prairie plant and animal species have dramatically declined. Of the 12 butterfly species native to Minnesota prairies, two species, the Poweshiek skipperling and the Dakota skipper, have already largely disappeared from the state and are proposed for listing under the U.S. Endangered Species Act despite being historically among the most common prairie butterflies and having their historic ranges concentrated in Minnesota.
This project will enhance the current program, integrating new invasive carp control and detection methods to monitor and remove invasive carp to avoid establishment in Minnesota.
Minnesota has 15.9 million acres of forest land managed by a variety of county, state and federal agencies, and private landowners for timber production, wildlife habitat, and ecological considerations. Forest managers rely on inventory data to make effective planning and management decisions. Because forests are continually changing through natural and human processes, forest inventory data is periodically updated. However, doing so is an expensive and time-consuming endeavor and, as a result, much of Minnesota’s forest inventory data is currently out of date.
Autonomous robots, powered by green hydrogen and solar power, designed to remove weeds in row crop fields can improve agricultural ecosystems with reduced herbicide application and fossil fuel use.
To improve display areas that feature quilts, historic and artistic photographs, American Indian fine art, indigenous floral arrangements, locally grown herbs, and other handiwork indicative of Becker county by purchasing display cases and improving lighting. Additionally, to feature American Indian performers and a Norwegian performing pair to share their talents under the free tent during the fair.
We will compile all available data for Minnesota Trumpeter Swans and use these sources to model historical population abundance and predict future population dynamics.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models simulate sediment erosion and transport, however these models periodically need to be adjusted to be consistent with the most recent sources of information regarding sediment distribution and loading rates. The goal of this project is to refine the sediment source partitioning and simulation in the Minnesota River basin using all relevant available sources of information.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.
Funds for RIM conservation easements build on Clean Water Fund (CWF) investments for restoration and protection projects that "stack" habitat and clean water benefits. Projects will be identified in watershed plans developed through BWSR's One Watershed, One Plan program, in which local governments strategically set priorities for clean water and habitat, target implementation, and set measurable goals. BWSR currently distributes CWF dollars to partnerships with approved plans for water quality projects.
The Works Museum will design, fabricate, and install a new exhibit with partners from Minnesota's East African, Hmong, and Latinx communities that forwards elementary education goals and celebrates Minnesota's rich cultural diversity.
We will assess movements, survival, and causes of mortality of Minnesota elk while developing a non-invasive, safer method to estimate population size. This information is important for long-term management efforts.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.
This project collaborates with 1) Minneapolis Hawthorne Neighborhood Council (multi-cultural/intergenerational); 2) Minnesota Independence College and Community (MICC), Richfield (neuro-divergent young adults); 3) an established network of 20+ senior centers and organizations serving people with developmental disabilities statewide (multi-cultural and intergenerational), such as Centro Tyrone Guzman (Latinx), Ecumen Prairie Lodge, Brooklyn Park, Wabasha County Developmental Achievement Center, Wabasha, and Adult Day Services, Bemidji; 4) community collaborations in Bemidji and New Ulm servi
To hire a qualified and experienced HVAC engineer to evaluate the current system in preparation for better control of the Kensington Area Heritage Society museum environment.