This project will support construction of three watershed framework models built using the Hydrologic Simulation Program FORTRAN (HSPF). These executable models will simulate hydrology at the subbasin scale. An HSPF model will be built for each of three major watersheds: the Crow River/North Fork Crow River, the South Fork Crow River, and the Sauk River.
This project will support construction of three watershed framework models built using the Hydrologic Simulation Program FORTRAN (HSPF). These executable models will simulate hydrology at the subbasin scale. An HSPF model will be built for each of these major watersheds: Crow Wing River, Redeye River, and Long Prairie River.
This project will finalize HSPF watershed model construction and complete the calibration/validation process for the following three watersheds: North Fork Crow River, South Fork Crow River, and Sauk River.
This project will complete the development of two watershed HSPF models for the Mustinka River and Bois de Sioux River watersheds. These calibrated and validated executable models will simulate hydrology at the 12-digit HUC subbasin scale.
This project will continue HSPF watershed model construction beyond the initial framework development. The consultant will add representation of point source discharges to the model. The consultant will also compile flow data for the purposes of calibration and validation. Finally, an initial hydrologic calibration will be performed and submitted for approval.
The goal of this project is to continue and finalize Hydrological Simulation Program FORTRAN (HSPF) watershed model construction and complete the calibration/validation process for the Minnesota River–Headwaters and Lac qui Parle watersheds that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) reports.
This project will complete spatial and temporal revisions of 6 Hydrologic Simulation Program FORTRAN (HSPF) models, the recalibration and validation of 7 watershed HSPF models, and the revision of the drainage network and point source representation of the Pomme de Terre HSPF model.
The goal of this project is to extend the existing HSPF models through 2012 in the Chippewa Watershed (07020005) and Hawk-Yellow Medicine Watershed (07020004) to incorporate recent monitoring data to support current MPCA business needs and sediment source investigations.
The purpose of this project is to identify effective irrigation and nutrient management best management practices and technologies and the barriers that prevent irrigators, producers, and other agricultural partners from adopting them in Otter Tail County. The primary goal is to reduce nitrate in areas where groundwater is susceptible to contamination as mapped by The Minnesota Department of Health by identifying effective BMPs and addressing the barriers to their adoption.
With only 1% of Minnesota’s native prairie remaining, many prairie plant and animal species have dramatically declined. Of the 12 butterfly species native to Minnesota prairies, two species, the Poweshiek skipperling and the Dakota skipper, have already largely disappeared from the state and are proposed for listing under the U.S. Endangered Species Act despite being historically among the most common prairie butterflies and having their historic ranges concentrated in Minnesota.
With only 1% of Minnesota’s native prairie remaining, many prairie plant and animal species have dramatically declined. Of the 12 butterfly species native to Minnesota prairies, two species, the Poweshiek skipperling and the Dakota skipper, have already largely disappeared from the state and are proposed for listing under the U.S. Endangered Species Act despite being historically among the most common prairie butterflies and having their historic ranges concentrated in Minnesota.
This project will enhance the current program, integrating new invasive carp control and detection methods to monitor and remove invasive carp to avoid establishment in Minnesota.
Autonomous robots, powered by green hydrogen and solar power, designed to remove weeds in row crop fields can improve agricultural ecosystems with reduced herbicide application and fossil fuel use.
We will compile all available data for Minnesota Trumpeter Swans and use these sources to model historical population abundance and predict future population dynamics.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models simulate sediment erosion and transport, however these models periodically need to be adjusted to be consistent with the most recent sources of information regarding sediment distribution and loading rates. The goal of this project is to refine the sediment source partitioning and simulation in the Minnesota River basin using all relevant available sources of information.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.
Funds for RIM conservation easements build on Clean Water Fund (CWF) investments for restoration and protection projects that "stack" habitat and clean water benefits. Projects will be identified in watershed plans developed through BWSR's One Watershed, One Plan program, in which local governments strategically set priorities for clean water and habitat, target implementation, and set measurable goals. BWSR currently distributes CWF dollars to partnerships with approved plans for water quality projects.
The Works Museum will design, fabricate, and install a new exhibit with partners from Minnesota's East African, Hmong, and Latinx communities that forwards elementary education goals and celebrates Minnesota's rich cultural diversity.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.
The Kairos Alive! Cultural Wisdom Immersion and Sharing Project collaborates with Centro Tyrone Guzman, Augustana Open Circle, Walker West Music Academy and outstate Developmental Achievement Centers to explore and exchange joyful cultural meaning through music, dance, song and story via 2-way Zoom webcast. Project explores cultural heritage and identity expression, and how it relates to the universality of human experience, in an environment of creative safety and intercultural exchange.
This project collaborates with 1) Minneapolis Hawthorne Neighborhood Council (multi-cultural/intergenerational); 2) Minnesota Independence College and Community (MICC), Richfield (neuro-divergent young adults); 3) an established network of 20+ senior centers and organizations serving people with developmental disabilities statewide (multi-cultural and intergenerational), such as Centro Tyrone Guzman (Latinx), Ecumen Prairie Lodge, Brooklyn Park, Wabasha County Developmental Achievement Center, Wabasha, and Adult Day Services, Bemidji; 4) community collaborations in Bemidji and New Ulm servi
To hire a qualified and experienced HVAC engineer to evaluate the current system in preparation for better control of the Kensington Area Heritage Society museum environment.
The goal of this project is to establish load reduction requirements for impaired waters and to develop restoration strategies to improve water quality for impaired waters and protection strategies to maintain the quality of water for water bodies meeting standards.
This project will complete data collection on 11 lakes over a 2 year period in the Pomme de Terre Watershed. The data collected will be be used in the Major Watershed Project proposed for this watershed.
As lake-focused development continues these high quality waters will see increasing amounts of land use change. The State Demographer projects that the targeted lake catchments will see population increases of 25-62% within 20 years. Isolating these contributing areas permits the Lake Protection Analysis project to perform multiple GIS analyses to accurately inform water quality discussions. The final framework will allow local water managers to prioritize across their water bodies, target activities to specific subsheds, and develop measurable goals.
Phase 4 of the Lake Winona Total Maximum Daily Load (TMDL) project will finalize the draft Lake Winona TMDL, dated November 2009, by completing additional data analysis, lake quality modeling, updating the TMDL report, and supporting the public involvement process.
Acquire 26-acres with 8,000 feet of lake shore located 2 miles west of the city of Alexandria. This will be the first phase of a larger acquisition totaling 136 acres. The property is bisected by the Central Lakes Trail and contains unimproved uplands, high hills, scenic vistas, small wood lots and wetlands.
The Lake Ida and Ditch 23 Wetland Feasibility Project will investigate and review the phosphorus loading of Lake Ida and design a project to protect Lake Ida water quality. Lake Ida is a 'high quality, unimpaired lake at the highest risk of becoming impaired' according to MPCA's Lakes of Phosphorus Sensitivity Significance. With the County Ditch 23 inlet identified as a priority area to reduce phosphorous, a professional engineering firm will explore the best solution to reduce phosphorus.
Update previous draft Total Maximum Daily Load (TMDL) documents and modeling files with Environmental Protection Agency (EPA) comments and site specific standards.