Collaboration between African and Asian American artists to jointly create/present a new dance drama - Resonance.
Project Resonance orchestrates new creations of music and dances to serve as a communication bridge across cultural/racial lines, to mitigate racial tensions between African and Asian communities, to illustrate the cross-cultural experience, and eventually promote Intercultural Harmony.
Resonance inspires inner/outer connections to create sustainable impacts.
We will characterize environmental drivers contributing to the decline of wild rice using lake sediment cores to reconstruct historical wild rice abundance in relation to lake and watershed stressors.
Water quality and flood damage reduction goals can't be accomplished without reducing flows and taking a targeted approach to the upper most reaches of the most critical waterways. Water and sediment control basins are eartern structures that retain water and have been identified as one of the best tool for measured success in reducing peak flows. For this project, basins will be targeted and implemented in the Upper Cedar River Watershed, specifically in the Dobbins Creek Watershed.
Under the CREP partnership with USDA, 71 easements were recorded on a total of 4,365 acres to restore previously drained wetlands and adjacent uplands. The easements were accomplished with local implementation done by SWCD, NRCS and FSA staff within the 54 county CREP area and leveraged federal funds for both landowner payments and cost share for conservation practice installation.
This program is a part of a comprehensive clean water strategy to prevent sediment and nutrients from entering our lakes, rivers, and streams; enhance fish and wildlife habitat; protect groundwater and wetlands. Specifically the Riparian Buffer Easement Program targets creating buffers on riparian lands adjacent to public waters, except wetlands. Through the Reinvest in Minnesota Program (RIM) and in partnership with Soil and Water Conservation Districts and private landowners, permanent conservation easements are purchased and buffers established.
Nitrogen is a serious problem in Minnesota's Mississippi River Basin and the Dodge Soil and Water Conservation District (SWCD) plans to address this problem through the instillation of six nitrogen reducing agricultural best management practices in the Dodge/Steele Joint County Ditch No. 11 system, also known as the Ripley Ditch system. Agriculture drainage, through the use of agricultural tile drainage systems, has been identified as the number one leading source of nitrogen in the Mississippi River Basin.
We propose identifying hot spots of groundwater chloride pollution of surface waters due to excessive road salt use, which is a long term source increasing chloride impairment of surface waters.
The Root (HUC 07040008) and Upper Iowa/Mississippi River – Reno (HUC 07060002 and 07060001) watershed Hydrologic Simulation Program – FORTRAN (HSPF) models currently simulate hydrologic and water quality processes through 2015. In order to support work to update the existing WRAPS report, the two HSPF models will be extended through 2021.
The contractor will use the Scenario Application Manager (SAM) tool to build water quality restoration scenarios for the Root River watershed using the Hydrologic Simulation Program FORTRAN (HSPF) model. The SAM tool simulates total suspended solids (TSS) and nitrogen reductions based on implementation of various best management practices.
This grant will fund about 80 project in six sub-watersheds (Headwaters of the Middle & South Branch, Money Creek, Headwaters of Upper Iowa River, Mill Creek, south Fork Root River, and Carey Creek). Projects to include grassed waterways, water and sediment control basins, grade stabilization structures, livestock waste projects, streambank projects and cover crops. Funding will also support staff time for project development and technical assistance for the cost-share projects.
This grant will fund an expected 44 projects in 4 subwatersheds (South Fork Root River, Crooked Creek, Rush-Pine and portions of the headwaters of the Middle and South Branch Root) and 2 DWSMAS (Chatfield and Utica). Projects include grassed waterways, WASCOBs, grade stabilization structures and cover crops, plus field walkovers, project development, and technical assistance. The anticipated sediment reduction from this work will be 2,285.5 tons, or 2.2% of the 10-year goal for the entire planning area.
TMDL project in the Root River Watershed that will support surface water assessment, analysis of data, interpretation of southeast Minnesota's karst landscape, stressor identification, TMDL computation, source assessment, and implementation planning.
Scientific and Natural Area (SNA) strategic acquisition (~85 acres) will conserve Minnesota's most unique places and rare species for everyone's benefit.
Approximately 70 percent of all Minnesotans rely on groundwater as their primary source of drinking water. Wells used for drinking water must be properly sealed when removed from service to protect both public health and Minnesota’s invaluable groundwater resources. The Minnesota Department of Health protects both public health and groundwater by assuring the proper sealing of unused wells.
Clean Water funds are being provided to well owners as a 50% cost-share assistance for sealing unused public water-supply wells.
This education project will continue building the next generation of conservationists in Minnesota by engaging youths and adults in science and outdoor learning through radio, podcasts, newsletters and schoolyard exploration.
The goal of this project is the continued development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL. The overall strategy will be used to help establish a path towards achieving the required reductions of turbidity/TSS.
The project consists of two initiatives: soil health outreach and a street sweeping study. These two initiatives will support further prioritization and targeting for nutrient reduction in the watersheds. The goal of this project is to increase implementation of soil health practices across the watersheds and adjust street sweeping schedules to reduce stormwater nutrient loading to surface waters.
State leadership for the 4-H Shooting Sports & Wildlife Program, including staff and 4-H volunteer committee members, will provide a menu of equipment options for local programs to choose from as a means to build their Shooting Sports & Wildlife project. Local programs will submit a grant application justifying how the new equipment will help them build and grow their program, attract and engage new audiences, and provide sustainability in their local chapter.