Minnesota Sea Grant seeks to create a science-policy fellowship program to train Minnesota's science-policy workforce and advance Minnesota's water resource policy, emulating Sea Grants successful federal-level fellowship program.
We propose robotics-based educational activities for middle-school youth on water quality in Minnesota. Youth will gain skills for measuring water quality and communicating results through group study and hands-on projects.
Tetra Tech will work to support the science needed when planning in Minnesota for water storage practice implementation. The goal is to provide practical water storage recommendations that can be incorporated into smaller scale planning within major watersheds (HUC 8), as well as larger scale planning for the Sediment Reduction Strategy for the Minnesota River and South Metro Mississippi River.
This project will educate and assist landowners to seal unused wells by providing cost-share funds of 50% up to $1,000 per well located in highly vulnerable groundwater areas in 10 southeast Minnesota counties. Groundwater is the primary source of drinking water and due to the karst geology in SE MN groundwater is more vulnerable to contamination.
The Yellow Medicine One Watershed One Plan has identified Protecting and Preserving Groundwater Quality and Quantity as one of the three priorities addressed in the Plan. Seven priority sub-watersheds have been identified as priority areas, as well as two townships that have been identified by the Department of Agriculture to have vulnerable groundwater areas. Our goal is to provide 50% cost share to seal 34 abandoned wells that are located in these priority areas.
To offer a new exhibit in the fair’s conservation building on 4-H and paint a mural related to the new exhibit. The Yellow Medicine County Fair has purchased display cases for their new 4-H exhibit. The exhibit consists of 4-H items from the past and present and the mural provides a history of county fairs.
The United States Environmental Protection Agency (USEPA) requires the Minnesota Pollution Control Agency (MPCA) to carry out the Total Maximum Daily Load Program (TMDL) in the state of Minnesota. Minnesota has an abundance of lakes and river reaches, many of which will require a TMDL study. In an effort to expedite the completion of TMDL projects, the MPCA has decided to construct watershed models. These models have the potential to support the simultaneous development of TMDL studies for multiple listings within a cataloging unit or 8-digit Hydrologic Unit Code watershed.
This project will monitor four lakes and 18 stream sites within the Yellow Medicine River Watershed to collect surface water quality data to determine the health of the watershed's streams and lakes and if they are in need of restoration or protection strategies. The sites will be monitored according to the Minnesota Pollution Control Agency's (MPCA) Water Monitoring Standard Operating Procedures.
The Yellow Medicine River Watershed District will contract with the Water Resource Center at the Minnesota State University - Mankato to complete a Geographic Information System (GIS) terrain analysis for the watershed using recently completed LIDAR data in southern Minnesota. Analysis will concentrate on the impaired reaches of the Yellow Medicine River Watershed and its tributaries. This inventory will utilize the State of Minnesota LiDAR elevation datasets to create many datasets through the analysis of this elevation data.
UMN Extension Center for Youth Development will partner with Winona and Rochester ALCs to engage 40 youth in year-long activities that connect, engage, and empower youth as environmental change-agents.
Adoption of renewable energy technologies and energy conservation practices can contribute in a variety of ways to the environmental and economic health of rural Minnesota communities through costs savings and emissions reductions. Engaging and coaching students as the leaders in the process of implementing such practices provides the added benefit of increasing knowledge, teaching about potential career paths, and developing leadership experience.
In previous phases of work, a Hydrologic Simulation Program FORTRAN (HSPF) model of the Zumbro River Watershed was developed to simulate hydrology and water quality for the 1995-2009 simulation period (Phase I), applied to evaluate various management scenarios for reducing sediment and nutrient loading (Phase II), and used to develop Total Maximum Daily Loads (TMDLs) for impaired stream segments and inform development of a nutrient TMDL for Rice Lake (Phase III).
Completion of the Master Plan for the Zumbro River Regional Water Trail (ZRRWT). Roughly 150 miles of navigable waters that wind through a diverse landscape before joining the Mississippi River.
OVERALL PROJECT OUTCOME AND RESULTS This project identified and prioritized areas in the Zumbro River Watershed that were determined critical for restoring and protecting water quality. Studies suggested that small areas of the landscape contribute disproportionately to nonpoint source pollution. So implementation of conservation projects that focus on those areas will maximize water quality benefits and ensure efficient use of resources.
This project will build upon the outreach and education efforts of the Zumbro Watershed Restoration and Protection Strategy (WRAPS). The targeted area will be residents of the Zumbro River Watershed, specifically individuals and organizations that are not professionally involved in managing natural resources. This project will provide necessary outreach and education during the interim between the Zumbro WRAPS and beginning the One Watershed, One Plan process.
The goal of this project is to test the sensitivity of the Zumbro River Watershed Hydrological Simulation Program FORTRAN (HSPF) model management scenario results. Additional goals are to develop Total Maximum Daily Loads (TMDLs) for impaired stream reaches and Rice Lake, which will be documented in a TMDL Report. The consultant will apply the existing calibrated and validated Zumbro River Watershed HSPF model to construct load duration curves to develop TMDLs.