We will compile all available data for Minnesota Trumpeter Swans and use these sources to model historical population abundance and predict future population dynamics.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models simulate sediment erosion and transport, however these models periodically need to be adjusted to be consistent with the most recent sources of information regarding sediment distribution and loading rates. The goal of this project is to refine the sediment source partitioning and simulation in the Minnesota River basin using all relevant available sources of information.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.
The Works Museum will design, fabricate, and install a new exhibit with partners from Minnesota's East African, Hmong, and Latinx communities that forwards elementary education goals and celebrates Minnesota's rich cultural diversity.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.
This project sustains momentum from the pilot project funded previously by the ENRTF for growing environmental education opportunities for learners from outside of Austin.
Ka Joog and Afro American Development Association (AADA) will partner to create a platform for Somali American youth to learn traditional Somali artistic mediums and present their learning through public presentations that will ignite community conversations. Art clubs and public forums will be implemented in Hennepin, Ramsey, and Clay counties and will promote inter-generational dialogue on taboo topics within the Somali American and cross-cultural acceptance with non-Somali audiences.
The consultant LimnoTech will support response to Total Maximum Daily Load (TMDL) comments the peer review process, United States Environmental Protection Agency and public notice. They will then revise the TMDL document as needed and attend internal and external project meetings.
The goal of this project is to finalize the Lake Pepin Watershed phosphorus total maximum daily load (TMDL) report by using the existing information and documentation prepared under previous contracts to prepare one TMDL report that addresses the impairments on the mainstem of the Mississippi River. Information developed to date for draft TMDLs on the Minnesota River mainstem will be documented for later use by the Minnesota Pollution Control Agency.
The goal of this project is to support the Minnesota Pollution Control Agency (MPCA) in responding to public comments on the Lake Pepin Watershed Phosphorus Total Maximum Daily Loads (TMDLs), which were prepared by LimnoTech under previous phases of the project.
This project will initiate the process of community engagement in the LeSueur River watershed by assessing the needs and interests of the community and bringing a diverse set of stakeholders together to determine how best to foster action in improving and protecting water quality.
Minnesota Departments of Information Technology Services (MNIT) and Minnesota Pollution Control Agency (MPCA) are partnering with the United States Geological Survey (USGS) to acquire high-resolution digital elevation data developed from airborne lidar (Light Detection and Ranging) for the Minnesota River East and West regions. The data will be used to generate Digital Elevation Models (DEMs) for use in engineering design and design reviews, conservation planning, research, delivery, floodplain mapping, and hydrologic modeling utilizing lidar technology.
The MPCA has selected the Soil and Water Assessment Tool (SWAT) watershed model to simulate watershed hydrology and water quality to assess various restoration scenarios in the Little Cannon River watershed. The SWAT model is an important tool in developing an understanding of existing conditions and simulating conditions under various management scenarios to inform the development of implementation strategies and plans to restore and protect streams and lakes.
This Phase 6 request for Ducks Unlimited’s Living Lakes program will enhance 1,000 acres of shallow lakes and restore 50 acres of small wetlands by engineering and installing water control structures for Minnesota DNR and U.S. Fish & Wildlife Service on public lands and wetlands under easement. Structures will be used by DNR and Service partners to restore wetland hydrology and actively manage shallow lake water levels to enhance their ecology for ducks, other birds, and hunters in the Prairie Region of Minnesota.
This Phase 7 request for Ducks Unlimited's Living Lakes program will enhance 1,160 acres of shallow lakes and restore 120 acres of small wetlands by engineering and installing water control structures for Minnesota DNR and U.S. Fish & Wildlife Service on public lands and wetlands under easement. Structures will help DNR and Service agency partners restore wetland hydrology and actively manage shallow lake water levels to enhance their ecology for ducks, other birds, and hunters in Minnesota's Prairie Pothole Region.