Review existing water utility ordinance, assess the need for additional controls and update the ordinance language and compose and distribute Wellhead Protection Newsletter for property owners within the DWSMA
This project will support the review of all public comments submitted for the Buffalo Creek TMDL and make appropriate edits and changes to the draft TMDL based on MPCA guidance.
Phase I built the foundation for the South Fork Crow River Watershed Restoration and Protection Strategy (WRAPS) and created a civic engagement plan. Civic engagement strategies were identified to create greater communication and watershed activities. Phase II provided the analytical and strategic foundation essential to prescribing protection and restoration strategies. These strategies focus on both protecting current fully supporting and restoring impaired surface water resources to water quality standards in the South Fork watershed.
This project will develop Total Maximum Daily Load (TMDL) allocations and complete a final draft TMDL report for the five lake impairments listed for the South Fork Crow River Watershed.
The South Fork Crow River Comprehensive Watershed Management Plan (SFCR CMWP) identifies priority concerns, short-term and long-term goals for drainage water management, loss of water storage and altered hydrology, nutrient loading to surface waters, wind and water erosion, and soil health. Through the plan, specific details for structural and management practices are described in the implementation schedule for each of the planning regions and priority areas.
Imminent Health Threat (IHT) systems are those that are discharging improperly treated human waste onto the ground surface or into surface waters. In addition to the potential water quality impacts, untreated sewage has the potential to introduce bacteria and viruses into the environment. When IHT systems are identified, county or city staff assist the homeowners through the process required to bring their systems into compliance with the septic ordinance.
Imminent Health Threat (IHT) systems are those that are discharging improperly treated human waste onto the ground surface or into surface waters. In addition to the potential water quality impacts, untreated sewage has the potential to introduce bacteria and viruses into the environment. When IHT systems are identified, county or city staff assist the homeowners through the process required to bring their systems into compliance with the septic ordinance.
This project contains several activities that will implement effective, shovel ready conservation practices on multiple water bodies. The goal is to reduce the erosion impacting stream bank stability. Three initiatives will be implemented, including the installation of four shoreland restoration/stabilization projects, completion of two stream bank stabilization projects on the Middle Fork Crow River and a rain barrel program. An education program will provide outreach to lake and city residents throughout the Middle Fork Crow River Watershed.
Each fiscal year of ACHF funding, a majority of the twelve regional library systems agree to allocate 10% of their ACHF funding to support statewide partnership projects. SELCO serves as the fiscal agent for statewide projects.
We will deploy acoustic detectors and revisit roost trees identified in our previous ENRTF project to measure effect of seven years of white-nose syndrome on Minnesota bats.
This project seeks to provide data on insecticide contamination in the soil and the insect community across the state and the effect of sublethal insecticide exposure on insect reproduction.
To support teachers in addressing new science standards , we propose a series of workshops across Minnesota facilitating conversation about sustainability and water conservation, specifically integrating western science and Indigenous perspectives.
This project will enhance volunteer monitoring efforts and improve the methods used by area Lake Associations in sample collection, handling and data management. It will also assist these organizations in developing simple, straightforward lake management plans that will carry their efforts well beyond the scope of this project.
This project will collect additional water quality and flow data on tributaries on the South Fork Crow River and Buffalo Creek. Further assessment of these reaches will provide a better understanding of what impacts these tributaries have on the impaired South Fork Crow River and Buffalo Creek.
The soil and water conservation districts within the watersheds for the Redwood and Cottonwood Rivers have been putting conservation practices on the ground for years in a long-running collaborative effort.
This area of the Minnesota River Basin has been identified as contributing significant amounts of sediment to the watershed. The primary cause of the sediment is from gullies and ravines. This project by the Greater Blue Earth River Basin Alliance (GBERBA) continues efforts begun with FY2011 Clean Water Funds. Using data collected through Geographic Information Systems (GIS) and LiDAR, GERBA will install best management practices to address severe ravines and gullies in targeted specific locations.
RESPEC is a contractor with knowledge of site-specific standard development and will respond to United States Environmental Protection Agency questions and concerns regarding attainability of standards. The response will be based on bathtub model data and also a review of technical memorandums developed by the Minnesota Pollution Control Agency on aquatic life and aquatic recreational standard attainability.
The Greater Blue Earth River Basin Alliance (GBERBA), a nine County/SWCD JPO has identified buffers as a basin priority. This initiative will work towards the goal of identifying all DNR protected shoreland in the GBERBA counties without a 50 foot vegetative buffer. Buffer strips protect surface and groundwater from a multitude of pollutants. During stormwater run off events buffers can remove between 50 and 100 percent of nutrients, pesticides, pathogens, and sediment. The estimated sediment reduction for this project is 756 tons per year prevented from entering our waters.
This program will protect and restore/enhance high quality fish, game, and wildlife habitats by developing complexes or corridors of new and/or expansions of MN DNR Wildlife Management Areas (WMA) and/or Aquatic Management Areas (AMA) in the Program area. The proposed The Green Corridor Legacy Program ? Phase II FY2011 appropriation will be a continuation of the Phase I FY2010 appropriations by LSOHC. The Green Corridor Legacy Program fiscal agent is the Redwood Area Communities Foundation (RACF) dba Green Corridor Inc with oversight/management responsibilities by the Green Corridor Inc.
Water flows without concern for political jurisdiction boundaries. This often means project work requires a little more coordination. Jackson, Cottonwood and Murray County did the extra coordination to land a grant to reduce sediment to the West Fork of the Des Moines River. The approved grant has four separate projects inthree counties.Jackson County has two projects: the Federated Rural Electric Association sediment control structure and the City of Jackson bioswale.
The Southwest Prairie Technical Service Area 5 (SWPTSA), located in the southwest corner of Minnesota, encompasses 11 Soil and Water Conservation Districts (SWCDs): Cottonwood, Jackson, Lac Qui Parle, Lincoln, Lyon, Murray, Nobles, Pipestone, Redwood, Rock, and Yellow Medicine. This project will protect natural resources within the three major river basins of Minnesota, Missouri and Des Moines Rivers. The SWPTSA will assist member SWCDs in locating and identifying priority subwatersheds that have soil erosion and water quality issues using terrain analysis.
Turtle Island Skywatchers - Innovative Research and Data Visualization project works to protect Minnesota water, wildlife, and natural resources while empowering Indigenous youth as leaders and all citizens as researchers.
We will reconstruct historical lake conditions to identify factors linked to successful walleye fisheries and guide effective management in the face of warming temperatures, invasive species, and nutrient loading.