Invasive carp pose a threat to the ecology, economy, and natural resources of Minnesota. This proposal will include design, installation, and assessment of invasive carp deterrent and removal technologies at Lock and Dam 5 (LD5) on the Mississippi River and test new methods to support and enhance effectiveness of a lock deterrent. This LD5 invasive carp prevention and management program will be further developed in collaboration with partners, including the U.S. Fish and Wildlife Service (USFWS), U.S. Geological Survey (USGS), and U.S.
This project will collect real-time parameter data for specific conductance, water temperature, pH, dissolved oxygen, turbidity and stream flow at the United States geological Survey (USGS) gaging stations located at Fargo, ND and Grand Forks, ND on the Red River of the North; and publish the data both on the USGS NWIS website and in the USGS Annual Report.
We will characterize environmental drivers contributing to the decline of wild rice using lake sediment cores to reconstruct historical wild rice abundance in relation to lake and watershed stressors.
This is a multi-governmental project funded by the Minnesota Pollution Control Agency, the United States Geological Survey, North Dakota Department of Health, the Cities of Fargo, Moorhead, Grand Forks, and East Grand Forks to monitor river flow and condition parameters to gain an improved understanding of the nature of the chemical and physical attributes of the Red River of the North.
The Red Lake Watershed District will collect water chemistry samples, field measurements, and photos at water quality stations in the Thief River Watershed that have been prioritized for Intensive Watershed Monitoring. This sampling effort will allow for an unbiased assessment of stream conditions for aquatic life and aquatic recreation. Eleven stream monitoring stations have been selected for this monitoring effort. Sampling will be conducted during the years 2022 and 2023 so that data is available for assessment in 2024.
This project will support water quality monitoring and data analysis in nine major watersheds (8-digit Hydrologic Unit Codes) of the Lower Red River Basin. The monitoring will assist in providing water chemistry data needed to calculate annual pollutant loads for the Major Watershed Load Monitoring Program (MWLMP) and provide short term data sets of select parameters to other MPCA programs.
This project will provide land and water managers in the Red River Basin with data and online tools to prioritize actions on the landscape that achieve water quality objectives identified in local and state plans. This will help identify strategically important locations for implementing erosion control and water management practices. Standardized watershed-based data products will be integrated into a web-based planning tool which will be added to the Red River Basin Decision Information Network (RRBDIN) being developed as part of the Red River Watershed Feasibility Study.
The goal of this project is to development a Total Maximum Daily Load (TMDL) study that addresses all of the non-mercury-related impaired reaches along the Red River of the North (RRN). The TMDL study will provide an analytical and strategic foundation for recommending restoration strategies for impaired waters. This phase of the project will also include civic engagement efforts by providing water quality framework and stakeholder activities for civic/citizen engagement and communication.
This project is for Minnesota Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, to work with regional partners to promote understanding and protection of watersheds, and to organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
This project is for Minnesota Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, to work with regional partners to promote understanding and protection of watersheds, and to organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
The International Water Institute (IWI) will monitor 42 sites (3 basin, 12 major watershed, and 27 subwatershed) in the Red River and Upper Mississippi River Basins intensively during the contract period. There will also be 5 sites in the Red River Basin where mercury samples will be collected and sent to Minnesota Department of Health for analysis. The IWI will collect water samples across the range of flow conditions targeting sample collection at times of moderate to high flow.